Partenaires

MSC
Logo CNRS Logo Université Paris Diderot
Logo tutelle Logo tutelle



Search

On this website

On the whole CNRS Web


Home page > Actualités > Une goutte surprise en pleine cristallisation.

Une goutte surprise en pleine cristallisation

Dans une récente étude* menée conjointement entre le laboratoire Matière et Systèmes complexes, le Ladhyx et l’Institut d’Alembert, des chercheurs ont percé les mystères de l’instant précis auquel des cristaux de glace se forment lorsqu’une goutte d’eau entre en contact avec une surface très froide. Ces nouvelles connaissances trouvent leur application directe dans plusieurs domaines comme l’industrie métallurgique ou l’aéronautique notamment.

Notre collègue Axel Huerre, et ses collègues du laboratoire MSC, du Ladhyx et de l’Institut d’Alembert ont développé les premières expériences consistant à déposer une goutte d’eau liquide de moins de 2 mm sur une surface froide (-30°C) et à observer ensuite le comportement de cette goutte d’eau jusqu’à sa cristallisation complète.

Ce phénomène de cristallisation d’un liquide au contact d’une surface froide, ici en saphir pour sa capacité à bien conduire la chaleur, a suscité de nombreuses interrogations dans la communauté scientifique au cours des deux dernières décennies. Le travail récemment réalisé par les chercheurs, pour la première fois avec de l’eau et à des températures autour de -30°C, permet, grâce à une visualisation directe du processus de solidification, de préciser les mécanismes précédemment proposés pour d’autres fluides et de mettre en lumière ceux en jeu à l’instant précis de la formation des premiers cristaux de glace.

Le premier élément nouveau mis en avant concerne le comportement de la goutte d’eau liquide. Les résultats des expériences montrent que ce dernier est identique quelle que soit la température du substrat. Par exemple, la vitesse d’étalement de la goutte d’eau liquide décroît lorsqu’elle s’étale, et ce de la même manière que le substrat soit à 40°C ou à -30°C. Ce premier constat apporte un élément nouveau sur la compréhension du phénomène d’étalement de la goutte sur une surface très froide. Restait alors à examiner les mécanismes en jeu à l’interface eau liquide/surface froide.

Dès qu’elle est déposée, la goutte d’eau s’étale. Parallèlement les premiers cristaux de glace se créent à l’interface eau liquide/substrat et poussent simultanément horizontalement et verticalement. La croissance horizontale se fait à vitesse constante d’autant plus rapide que la surface de contact, le substrat, est plus froide. Cette vitesse de croissance horizontale est aussi plus grande que celle de croissance verticale des cristaux mais aussi de celle d’étalement de la goutte. Ainsi, grâce à deux caméras ultra-rapides (6000 images/s), les chercheurs ont pu observer le processus précis d’étalement de la goutte sur la surface refroidie.

Leurs conclusions sont, tout d’abord, que le front liquide, qui avance, décélère continuellement. Les cristaux qui se forment grossissent plus rapidement que l’eau ne s’écoule et finissent par encercler la goutte d’eau qui ne s’étale plus. L’arrêt d’étalement de l’eau se produit donc lorsque les cristaux gagnent la course et grandissent plus rapidement que le liquide n’avance, donnant lieu à des images de dépôt fascinantes. Simultanément, la croissance verticale des cristaux, plus lente, s’achève alors et la goutte est ainsi complètement cristallisée.

À -30°C, une goutte d’eau de 2mm cristallise en 1ms.

Fig. 1 Évolution de l’étalement d’une goutte d’eau sur un support à -13°C. La formation des cristaux de glace (flèches à 0.8ms) se produit d’abord à l’intérieur, puis les cristaux rattrapent la ligne de progression de l’étalement (flèches à 3.7ms)

Ces récentes découvertes, issues de la recherche fondamentale, intéressent tout particulièrement le secteur aéronautique qui intégrera ces nouvelles connaissances dans le développement de solutions pour remédier, entre autre, au givrage des instruments embarqués dans les avions ou drones.

Ce travail a fait l’objet d’une UNE sur le site de l’Université de Paris à retrouver ici.

*Étude conduite conjointement entre le laboratoire Matière et Systèmes complexes (Université Paris Cité, CNRS), le Ladhyx (École Polytechnique, CNRS) et l’Institut d’Alembert (Sorbonne Université, CNRS). Références

Référence : Contact Line Catch Up by Growing Ice Crystals – Rodolphe Grivet, Antoine Monier, Axel Huerre, Christophe Josserand, and Thomas Séon, Phys. Rev. Lett. 128, 254501 – Published 22 June 2022

DOI : https://doi.org/10.1103/PhysRevLett.128.254501


Contact : Published on / Publié le 1er septembre