Partenaires

MSC
Logo CNRS Logo Université Paris Diderot
Logo tutelle Logo tutelle



Search

On this website

On the whole CNRS Web


Home page > Seminars > Previous defences > Defences in 2012 > Soutenance de thèse : Jonathan Fouchard ; vendredi 23 novembre 2012 à 14 heures, "Relation entre forme, tension et adhésion au cours de l’étalement d’une cellule animale".

Soutenance de thèse : Jonathan Fouchard ; vendredi 23 novembre 2012 à 14 heures, "Relation entre forme, tension et adhésion au cours de l’étalement d’une cellule animale"

Unless otherwise stated, seminars and defences take place at 11:30 in room 454A of Condorcet building.


Soutenance de thèse de Jonathan Fouchard le vendredi 23 novembre 2012 à 14h, thèse effectuée sous la direction de Atef Asnacios.

Lieu : bâtiment Condorcet, Salle Luc Valentin - 454 A (niveau 4). La soutenance sera suivie d’un pot au 6e étage.

Relation entre forme, tension et adhésion au cours de l’étalement d’une cellule animale

Mots-clés : Mécanique cellulaire, complexes d’adhésion, tension acto-myosine, mécano-sensibilité, étalement cellulaire, micro-plaques.

Abstract :

Each cell of an animal has the same genome. Nevertheless, those cells can express many different phenotypes, associated to different shapes and architectures. It has been recently shown that the mechanical environment can influence both cell shape and phenotype. Thus, we can wonder how a cell gets its shape and what part its mechanical environment plays in it.

In general, a shape results from an equilibrium of forces beetwen the inside and the outside. In the cell, the tensile forces exerted by the acto-myosin cytoskeleton are transmitted to the substrate through proteins aggregates named adhesion complexes.

Here, we studied the early spreading of fibroblasts, an event in which those cells go from a spherical shape to an isotropic spread shape. In order to determine how adhesion formation correlates with the tension released to the substrate during this process, we built up a setup able to measure the cellular traction forces in a uniaxial geometry and to monitor simultaneously the organization of adhesion complexes through TIRF microscopy. This setup permitted us to develop a scenario of cell spreading in two phases. In the first phase, the spreading is fast, the force is null and no adhesion complexe is visible. The transition to the second phase occurs when the shape of the cell body reach a critical contact angle of 90°. Here, the force starts to build up followed by adhesions and a slow-down of cell spreading.

We next investigated how the mechanical environment could affect this scenario. To do that, we first modified the stiffness of our force probe; then, we compared the pattern of adhesion for a cell spreading on one plate or between two microplates.

Keywords

Biophysics, Mechanics of cells and tissues, Mechanotransduction, Adherence


Contact : Équipe séminaires / Seminar team - Published on / Publié le 7 November 2012


In the same section :