User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
start [2016/09/15 13:58]
andrew [Andrew Callan-Jones]
start [2016/10/05 13:57] (current)
andrew [Andrew Callan-Jones]
Line 1: Line 1:
 ====== Andrew Callan-Jones ====== ====== Andrew Callan-Jones ======
-/*{{ :andrewphoto.png?​nolink&​200|}}*/ +{{ ::​andrewphoto_5oct2016.jpg?​nolink&​200| }} 
-{{ :​andrewphoto15sept2016.jpg?​nolink&​200|}}\\ ​+/*{{ :​andrewphoto15sept2016.jpg?​nolink&​200|}}\\ ​*/
 **Laboratoire Matière et Systèmes Complexes/ Université Paris-Diderot** \\ **Laboratoire Matière et Systèmes Complexes/ Université Paris-Diderot** \\
 Bâtiment Condorcet, Office 769A\\ Bâtiment Condorcet, Office 769A\\
Line 30: Line 30:
 Triggers a Stochastic Switch to Fast Amoeboid Cell Motility"​ (Cell)]]\\ We found that elevated contractility spontaneously polarizes zebrafish cells, leading to cortical flows, migration, and cell deformation.| Triggers a Stochastic Switch to Fast Amoeboid Cell Motility"​ (Cell)]]\\ We found that elevated contractility spontaneously polarizes zebrafish cells, leading to cortical flows, migration, and cell deformation.|
 |{{:​cellshape.png?​nolink&​|}}| [[http://​dx.doi.org/​10.1103/​PhysRevLett.116.028102|"​Cortical Flow-Driven Shapes of Nonadherent Cells |{{:​cellshape.png?​nolink&​|}}| [[http://​dx.doi.org/​10.1103/​PhysRevLett.116.028102|"​Cortical Flow-Driven Shapes of Nonadherent Cells
-" (Phys. Rev. Lett.)]]\\ Using a minimal model that describes the cell cortex as a thin layer of contractile active gel, we show that the anisotropy of active stresses, controlled by cortical viscosity and filament ordering, can account for polarized zebrafish cell shapes | +" (Phys. Rev. Lett.)]]\\ Using a minimal model that describes the cell cortex as a thin layer of contractile active gel, we show that the anisotropy of active stresses, controlled by cortical viscosity and filament ordering, can account for polarized zebrafish cell shapes
-| {{ ::cellfragment.png?​nolink&​300 |}} | [[http://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.100.258106|"​Viscous-Fingering-Like Instability of Cell Fragments"​ (Phys. Rev. Lett.)]]\\ We found a novel flow instability that can arise in thin films of cytoskeletal fluids if the friction with the substrate is sufficiently strong. This mechanism could be relevant to cell polarization preceding 2D migration.| +| {{ ::cellpolariz_substraterigidity2.png?​nolink&​500 |}} | [[http://​www.nature.com/​articles/​ncomms8525|"​Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing"​ (Nat. Commun.)]]\\ Matrix rigidity sensing regulates a variety of cellular processes, with implications for tissue development. We find that increasing substrate stiffness triggers actin cytoskeletal remodelling:​ theory and experiment reveal an isotropic to nematic transition of actin stress fibers, and a transition from viscous to elastic rheology.| 
-|@lightgreen:​**Confined cell motility**||+| {{ ::​cellfragment2.png?​nolink&​300 ​}} | [[http://​journals.aps.org/​prl/​abstract/​10.1103/​PhysRevLett.100.258106|"​Viscous-Fingering-Like Instability of Cell Fragments"​ (Phys. Rev. Lett.)]]\\ We found a novel flow instability that can arise in thin films of cytoskeletal fluids if the friction with the substrate is sufficiently strong. This mechanism could be relevant to cell polarization preceding 2D migration.| 
 +|@lightgreen:​**Cell motility ​under confinement**||
 | {{ ::​confined_hela.png?​nolink&​300 |}} | [[http://​dx.doi.org/​10.1016/​j.cell.2015.01.007|"​Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells" (Cell)]]\\ We show that in low adhesion but high confinement conditions, mesenchymal cells spontaneously transform to an amoeboid migration mode.| | {{ ::​confined_hela.png?​nolink&​300 |}} | [[http://​dx.doi.org/​10.1016/​j.cell.2015.01.007|"​Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells" (Cell)]]\\ We show that in low adhesion but high confinement conditions, mesenchymal cells spontaneously transform to an amoeboid migration mode.|
 | {{ ::​gel_layer_motility.png?​nolink&​250 |}} | [[http://​iopscience.iop.org/​article/​10.1088/​1367-2630/​15/​2/​025022/​meta|"​Active gel model of amoeboid cell motility"​ (New J. Phys.)]]\\ Modeling a confined, motile cell as a layer of active gel permeated by a solvent, we obtain a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer, in agreement with experiments.| | {{ ::​gel_layer_motility.png?​nolink&​250 |}} | [[http://​iopscience.iop.org/​article/​10.1088/​1367-2630/​15/​2/​025022/​meta|"​Active gel model of amoeboid cell motility"​ (New J. Phys.)]]\\ Modeling a confined, motile cell as a layer of active gel permeated by a solvent, we obtain a contractile-type instability to a polarized moving state in which the rear is enriched in gel polymer, in agreement with experiments.|
start.1473940692.txt.gz · Last modified: 2016/09/15 13:58 (external edit)