Erratum

Two-dimensional shear modulus of a Langmuir foam

B. Dollet\(^1\)\(^{(a)}\), F. Elias\(^2\)\(^{(b)}\) and F. Graner\(^1\)\(^{(c)}\)

\(^1\)Laboratoire de Spectrométrie Physique (UMR 5588 CNRS - Université J. Fourier Grenoble 1) BP 87, F-38402 Saint Martin d’Hères cedex, France, EU
\(^2\)Laboratoire des Milieux Désordonnés et Hétérogènes (UMR 7603 CNRS - Université Paris 6) case 78, 4 place Jussieu, F-75252 Paris cedex 05, France, EU

PACS 99.10.Cd – Errata

Copyright © EPLA, 2009

A few years after the publication of paper [1], we regret that we have not been able to experimentally reproduce the data of fig. 3b. As a consequence of that, we cannot directly measure the shear modulus of a Langmuir foam by a mechanical method, based on the flow of the foam relative to a circular obstacle. We have serious reasons to believe that fig. 3b is flawed, and we therefore decided to retract it.

It is still possible to probe foam rheology simultaneously by a mechanical measurement and by the optical method developed in [1]. In particular, this has been achieved in the case of the 2D flow of foam around an asymmetric obstacle, a cambered airfoil [2]: in that study, the mechanically measured lift agreed quantitatively with the contributions of elastic stress and pressure obtained by image analysis.

The other data of [1] have been checked, and the other conclusions remain valid. In particular, fig. 3a shows a correlation between the stress and bubble deformation based on image measurements. This has been checked in other foams, \textit{e.g.}, in refs. [3–5].

Note also that the link to the thesis which was formerly quoted as ref. [25] has changed [6].

REFERENCES

\(^{(a)}\)Present address: Institut de Physique de Rennes, Université Rennes 1, UMR CNRS 6251, Bâtiment 11A, Campus Beaulieu - F-35042 Rennes cedex, France, EU.

\(^{(b)}\)Present address: Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université Denis Diderot Paris 7 - 10 rue Alice Domon et Léonie Duquet, F-75205 Paris cedex 13, France, EU and Université Pierre et Marie Curie Paris 6, Faculté de Physique UFR 925 - 4 place Jussieu, F-75252 Paris cedex 05, France, EU.

\(^{(c)}\)Present address: Biologie du Développement, UMR 3215 Institut Curie and CNRS, Inserm U934 - 26 rue d’Ulm, F-75248 Paris cedex 05, France, EU.