Soap film vibration: origin of the dissipation

Sébastien Kosgodagan Acharige, Florence Elias*ab and Caroline Dereca

We investigate the complex dispersion relationship of a transverse antisymmetric wave on a horizontal soap film. Experimentally, the complex wave number k at a fixed forcing frequency is determined by measuring the vibrating amplitude of the soap film: the wavelength (linked to the real part of k) is determined by the spatial variation of the amplitude; the decay length (linked to the imaginary part of k) is determined by analyzing the resonance curves of the vibrating wave as a function of frequency. Theoretically, we compute the complex dispersion relationship taking into account the physical properties of the bulk liquid and gas phase, and of the gas–liquid interfaces. The comparison between the computation (developed to the leading order under our experimental conditions) and the experimental results confirms that the phase velocity is fixed by the interplay between surface tension, and liquid and air inertia, as reported in previous studies. Moreover, we show that the attenuation of the transverse antisymmetric wave originates from the viscous dissipation in the gas phase surrounding the liquid film. This result is an important step in understanding the propagation of an acoustic wave in liquid foam, using a bottom-up approach.

1 Introduction

Although solid foams are commonly used as acoustic dampers, little is known about the acoustic properties of liquid foams, which are dispersions of gas bubbles in a liquid matrix stabilized by surfactants. Recent studies report measurements of the velocity and attenuation of sound in liquid foams: several regimes of propagation have been identified as a function of frequency, as well as acoustic resonances. Various sources of attenuation have been invoked to account for the observations, which depend on the bulk properties of the gas and liquid phases (compressibility, density and viscosity), on the interfacial properties of the liquid–gas interfaces and on the local structure of the foam. The foam liquid skeleton is made of thin membranes (soap films), Plateau borders (which contain most of the liquid of the foam) at the junction between soap films, and vertices at the junction between Plateau borders: the vibration motion of all those constitutive elements is mechanically coupled during the acoustic wave propagation. Understanding the vibration of those individual elements is fundamental to model their coupling and therefore the acoustic propagation in liquid foams.

In this article, we are interested in the vibration motion of one of those elements: an individual soap film isolated on a rigid frame. We investigate the response of the film to a transverse vibration by measuring and modeling the dispersion relationship and the attenuation of the wave propagating on the film.

Various linear models of the dispersion relationship of a transverse vibration on horizontal soap films exist in the literature. They differ by the ingredients taken into account, amongst the physical characteristics of the bulk liquid and gas phases (volume mass and viscosity) and of the liquid–gas interface (surface tension and interfacial viscoelasticity). They predict two oscillation modes: a squeezing or symmetric mode (where both interfaces vibrate symmetrically with respect to the middle plane of the film) and an antisymmetric or bending mode (where the interfaces vibrate in phase). Due to the strong viscous friction associated with the symmetric mode, the most commonly observed vibration mode is the bending mode. An experimental measurement of the dispersion relationship of the bending mode, reported in ref. 11, shows that the elastic restoring force is due to the surface tension, whereas inertia comes from the inertia of the liquid in the soap film and from the inertia of air, which is dominant at low frequency. The attenuation of the wave is very low and has not been measured to the best of our knowledge. At large vibrating amplitude, non-linear behaviors of vibrated soap films have also been observed and studied. They concern the generation of vortices within the plane of the film, the self-adaptation of the local thickness of the soap film to the vibration amplitude, the formation of a liquid bulge in the middle of the film, and the soap film bursting at high forcing amplitude.

In this article, we investigate the complex dispersion relationship of the bending mode of a soap film. The real part of the dispersion relationship confirms the variation of the wavelength versus frequency already reported in the literature.
whereas the imaginary part enables us to determine the attenuation of the vibrating wave. We report here for the first time a theoretical modeling of the attenuation, as well as an experimental determination of the attenuation length. This determination is based on the measurement of the amplitude of a standing transverse wave on the film around the geometrical resonances, in the frequency range 200–2000 Hz. The film is vibrated with a low forcing amplitude so that non-linear effects are not observed. The comparison between the experimental results and the analytical model developed to the leading order shows that, under our experimental conditions, the attenuation of the transverse wave originates from the viscous dissipation in surrounding air. This result can be compared with the case of a microscale mechanical resonator where the viscous damping of air may be an important limiting factor for mass detection.15

The article is organized as follows. The experimental setup and methods of analysis are described in Section 2. In Section 3, we present the measurements of the real part of the dispersion relationship and of the soap film amplitude which shows resonant modes of the standing vibrating wave. The theoretical complex dispersion relationship is derived in Section 4. In Section 5, the complex dispersion relationship is simplified to the leading order under our experimental conditions. It is divided into its real part and its imaginary part, which are both separately compared to the experimental results. The theory and the experimental data agree very well, although some additional parameters have to be added to the model, probably due to the presence of the meniscus linking the film to its rigid support. Concluding remarks are given in Section 6, and the results are discussed: they are compared to the propagation of a transverse wave on a monolayer, and outlooks of this work are suggested in terms of investigating the coupling between the soap film and the meniscus dynamics.

2 Materials and methods

2.1 Experimental setup

The liquid films are made from deionized water and cationic surfactant TTAB (tetradecyltrimethylammonium bromide) with a concentration of 2.8 g L⁻¹. Glycerol (10 wt%) and dodecanol (0.04 wt%) are added to increase the film stability, extending the duration of the film from a few minutes to a few days. The surface tension γ and interfacial viscoelastic complex modulus ε’ = ε’’ + iε’’ are measured using an oscillating bubble tensiometer: γ = 22.5 mN m⁻¹, ε’ = 5 mN m⁻¹, and ε’’ = 25 mN m⁻¹ at 0.1 Hz. The mass density of the liquid phase is ρ = 1.0 × 10³ kg m⁻³ and its dynamic viscosity is η = 1.3 × 10⁻² Pa s. All the experiments were performed using the same solution.

The soap film is formed on a rigid circular porous glass plate having a circular bevelled hole in the middle (hole diameter 16.2 mm). The porous plate is placed horizontally in the middle of a home made closed cylindrical cell (Fig. 1). The internal height of the cell is larger than twice the film diameter. The porous plate is clamped between a step in the internal wall of the cell and a threaded tube that can be screwed on top of the porous plate. The horizontal and bottom walls of the cell, as well as the threaded cylinder, are made of black polyvinyl chloride (PVC). The internal bottom of the cell has a conical shape. The cell is closed by a circular microscope glass plate, tilted from the horizontal plane. The internal face of the glass cover is coated with a commercial anti-fog car windscreen coating to prevent vapor condensation. The four elements of the cell (PVC walls, porous plate, threaded cylinder and lid) can be rigidly clamped together to be vibrated on a shaker without relative motion. Between each experiment, the cell is dismounted and carefully rinsed; the porous plate is plunged in acetone for several hours and then rinsed in several successive baths of deionized water, before being dried and plunged in the surfactant solution.

The soap film is formed as follows: the porous plate is clamped and saturated with the soap solution. The film is stretched from the border of the hole using a Teflon slide. Just after the soap film is formed, the cell is closed and mounted on a drill where the film is centrifuged for a few minutes, as in ref. 16, until it becomes a homogeneous black film (thickness e = 0.01 to 0.1 µm). Let us notice that the so-formed black soap film is very stable and can last for several days without any noticeable-ability. After the centrifugation, the cell is placed on a shaker (Mini-shaker Type 4810 from Bruel&Kjaer) that creates a vertical displacement at a given frequency f (Fig. 2a). A centripetal circular transverse wave is created on the film from the borders; the wave is totally reflected at the centre of the film, and a resulting standing wave takes place on the soap film at the forcing frequency (Fig. 2b). Depending on f, resonances are then observed for some defined ratio of the wavelength versus the soap film diameter.

The amplitude of the transverse wave is determined using a laser beam (Coherent StingRay Laser, wavelength 660 nm, output power 20 mW), set at normal incidence when the film is at rest: the beam, reflected by the soap film, is deflected when the film is deformed. The incident laser beam is Gaussian. The laser is focused in the plane of the soap film, having a waist of (126 ± 2) µm in this plane. This waist is approximately 25 times smaller than the smallest wavelength of the soap film investigated in this article. The horizontal deflection X is recorded using a position sensitive detector (PSD – Hamamatsu C10443-03) placed above the film. Due to the tilt angle of the lid and of the conical shape of the internal bottom of the cell, the beam
reflected by the top and by the internal bottom of the cell does not reach the PSD: only the laser beam reflected by the soap film is detected. \(X \) is related to the value of the local slope of the film:

\[
X(r, t) = 2D \frac{\partial \zeta}{\partial r}(r, t) \tag{1}
\]

where \(\zeta(r, t) \) is the vertical displacement of the circular soap film at a distance \(r \) from the centre at time \(t \) and \(D \) is the distance between the soap film and the PSD (Fig. 2c): \(D = 16 \text{ cm or } 17 \text{ cm} \) depending on the experiment. Eqn (1) is valid for \(\zeta \ll D \) and for \(\zeta \ll \lambda \) where \(\lambda \) is the wavelength of the antisymmetric vibration. The PSD has a photosensitive area of \(12 \text{ mm} \times 12 \text{ mm} \) and gives the position of the center-of-gravity of the spot light, independent of the spot light size, shape and intensity. The PSD is connected to a lock-in amplifier which measures the deflection \(X \) at the forcing frequency.

The shaker is placed on a motorized translation stage to scan the local slope along the diameter of the vibrating film.

The electric shaker vibrates with a constant acceleration, therefore the forcing amplitude decreases with the forcing frequency like \(1/f^3 \). The amplitude \(A_{\text{cell}} \) of the cell placed on the shaker is determined independently using an accelerometer (Charge Accelerometer Type 4393-V from Bruel&Kjær) in order to calibrate the setup. We notice that the setup (experimental cell and electronics) introduces an additional resonance in the range 1050–1350 Hz.

2.2 Data analysis

In the large wavelength limit (wavelength is large compared to the vertical displacement and to the thickness of the film), the standing wave having a cylindrical symmetry writes

\[
\zeta(r, t) = A_0 J_0(kr)e^{i(\omega t + \phi_0)} \tag{2}
\]

where \(A_0 \) is the displacement amplitude at \(r = 0 \), \(J_0 \) is the Bessel function of the first kind and of zero order, \(\omega = 2\pi f \) is the angular frequency, \(k = k' + ik'' \) is the complex wave number and \(\phi_0 \) is the phase at \(r = 0 \) and \(t = 0 \). Under those conditions, eqn (1) becomes

\[
X(r, t) = -2DA_0 k J_0(kr)e^{i(\omega t + \phi_0)} = |X|e^{i\psi}e^{i\phi_0} \tag{3}
\]

The modulus \(|X|\) and the argument \(\psi \) of the laser beam deflection are measured, at the angular frequency \(\omega \), thanks to the lock-in amplifier.

We write a boundary condition:

\[
\zeta(R, t) = A_0 e^{i(\omega t + \phi_0)}. \tag{4}
\]

where \(A_0 \) and \(\phi_0 \) are respectively the amplitude and phase of the displacement at a distance \(R \) from the centre of symmetry. Combined with eqn (2), this gives:

\[
\begin{cases}
A_0 = |A_0|/|J_0(kR)| \\
\phi_0 = \phi_0 - \arg(J_0(kR))
\end{cases} \tag{5}
\]

Eqn (5) predicts resonances of the soap film transverse vibration when \(|J_0(kR)| \) is minimum. Let us note that the minimal value of \(|J_0(kR)| \) does not reach zero due to the imaginary part \(k'' \) of the wave vector. Moreover, the variation of \(A_0 \) and \(\phi_0 \) around the resonance frequencies strongly depends on the value of \(k'' \). Therefore, the measurement of the transverse wave attenuation \(k'' \) is based on the analysis of the shape of the resonance curves, as explained below.

3 Measurements

Fig. 3 shows the measurements of the modulus and the argument of the amplitude of the laser beam deflection \(X(r) \) at a given frequency. \(|X(r)|\) is compared to eqn (3) using \(k', k'' \) and \(A_0 \) as free parameters. The best fit gives the measurement of \(k' \) and \(A_0 \). However, the fit poorly depends on the value of \(k'' \), which cannot reasonably be determined by this method. The phase shift \(\phi_0 \) is determined graphically using the plot of \(\psi(r) \) as shown in Fig. 3.

The parameters \(k', A_0 \) and \(\phi_0 \) are then plotted as a function of frequency (Fig. 4 and 5). Five resonances are visible in Fig. 4: two of them fall in the frequency range 1050–1350 Hz where the resonance of the setup mixes with the resonance of the soap film. The three other resonances correspond to resonances of the soap film: the analysis of the profiles \(|X(r)|\) shows that they correspond to modes \(n = 2, 3 \) and \(5 \), having \((2n - 1)\) antinodes along the diameter of the film. Those modes are expected considering the axisymmetric geometry of the
vibrating film with an antinode in the centre according to eqn (2). The mode \(n = 4 \) is expected in the frequency range 1050–1350 Hz, therefore this mode will not be further investigated in this article. Surprisingly, the fundamental mode (\(n = 1 \)) could not be observed, the vibrating amplitude being too small to be detected for frequencies lower than 280 Hz. Finally, we notice a

4 Theoretical dispersion relationship

In this section we compute the complex dispersion relationship of the transverse wave on the horizontal soap film. We consider a liquid film of constant thickness \(e = 2h \). The liquid has a viscosity \(\eta \) and a constant mass density \(\rho \). The wavelength is assumed to be large compared to \(e \) and to amplitude \(\zeta \) of the vertical displacement. For simplicity, we consider here a two-dimensional problem (see Fig. 6): the film at rest is along the \(x \) axis; the transverse wave, a deformation along the \(z \) axis, propagates in the \(x \) direction. In other words, the problem is infinite in the perpendicular \(y \) direction. We have checked that the same calculation performed in a 3D geometry with an axial symmetry leads to the same dispersion relationship.
We develop here the calculations taking into account the interfacial viscoelastic modulus \(\varepsilon \), the inertia of air \(\rho_a \) and the viscosity of air, \(\eta_a \). To the best of our knowledge, it has been considered theoretically by Joosten\(^*\) in the MHz regime and in the limit of incompressible interfaces \((\varepsilon \to \infty) \). The calculation presented here extends this approach to other regimes, in particular to the kHz regime and the case of a finite \(\varepsilon \) corresponding to our experimental conditions.

4.1 Velocity and pressure fields for an antisymmetric vibration

The velocity field \(\vec{v} \) of a liquid volume element obeys the incompressibility condition and the Navier–Stokes equation:

\[
\begin{align*}
\text{div}(\vec{v}) &= 0 \\
\rho_a \partial_t \vec{v} &= -\nabla P + \eta_a \nabla^2 \vec{v} + \rho_a \vec{g}
\end{align*}
\]

where \(P \) is the local pressure and \(\vec{g} \) is the gravitational acceleration. \(\partial_t \) stands for the partial derivation with respect to time \(t \). The nonlinear inertial term in the Navier–Stokes equation has been neglected in the long wavelength limit.

The velocity field can be written as a combination of a potential flow and a rotational flow:

\[
\vec{v}(x, z, t) = -\nabla \Phi + \vec{\omega} \times \vec{r},
\]

where \(\Phi(x, z, t) \) is the potential function and \(\vec{\omega} = \nabla \times \vec{v} \) is the vorticity function, \(\vec{e}_y \) being a unit vector in the \(y \) direction. Therefore

\[
\begin{align*}
\Delta \Phi &= 0 \\
-\rho_a \partial_t \Phi + (P - P_0) - \rho g (h - z) &= 0
\end{align*}
\]

where \(P_0 \) is the pressure at rest at \(z = h \). For an antisymmetric solution, \(\Phi(x, -z, t) = -\Phi(x, z, t) \) and \(\vec{\omega}(x, -z, t) = \vec{\omega}(x, z, t) \) (the origin of the \(z \) axis is chosen in the plane of symmetry of the film at rest). The solutions corresponding to an oscillation at the angular frequency \(\omega_i \), propagating in the \(x \) direction write

\[
\begin{align*}
\Phi(x, z, t) &= A \sinh(kz) e^{i(\omega_i - kx)} \\
\vec{\omega}(x, z, t) &= B \cos(kz) e^{i(\omega_i - kx)}
\end{align*}
\]

where \(k = k' + ik'' \) is the complex wave number (note that here a damped oscillation corresponds to a negative \(k'' \)), and \(m^2 = k'^2 + ip \omega_i \eta_a \). \(A \) and \(B \) are two integration constants. We then obtain

\[
\begin{align*}
v_x(x, z, t) &= (ikA \sinh(kz) - imB \cos(kz)) e^{i(\omega_i - kx)} \\
v_z(x, z, t) &= (-kA \cosh(kz) - ikB \sinh(kz)) e^{i(\omega_i - kx)}
\end{align*}
\]

and, using eqn (7),

\[
P(x, z, t) = P_0 + \rho g (h - z) + ip \omega_i A \sinh(kz) e^{i(\omega_i - kx)}
\]

The motion of air under and above the film must also be considered. The velocity field in air \(\vec{v}_a \) is calculated using the same approach as above. We write \(\vec{v}_a(x, z, t) = -\nabla \Phi_a + \vec{\omega}_a \times \vec{r} \) with \(\vec{\omega}_a = \vec{\omega}_a \vec{e}_y \). Since the propagation velocity of the perturbation is small compared to the sound velocity in air, air is assumed to be incompressible. Therefore

\[
\begin{align*}
\text{div}(\vec{v}_a) &= 0 \\
\rho_a \partial_t \vec{v}_a &= -\nabla \Phi_a + \eta_a \nabla^2 \vec{v}_a + \rho_a \vec{g}
\end{align*}
\]

where \(\rho_a \) and \(\eta_a \) are respectively the mass density and the dynamic viscosity of air. Using the same argument as previously earlier (eqn (7)) and taking into account the boundary conditions

\[
\begin{align*}
\Phi_a(x, z, t), \vec{\omega}_a(x, z, t) &\to 0 \text{ when } z \to \infty, \text{ the solutions are, for } z \approx Z_1, \text{ where } Z_1 \text{ is the position of the upper interface of the film:}
\end{align*}
\]

\[
\begin{align*}
\Phi_a(x, z, t) &= C \exp(-kz) e^{i(\omega_i - kx)} \\
\vec{\omega}_a(x, z, t) &= D \exp(-mz) e^{i(\omega_i - kx)}
\end{align*}
\]

with \(m^2 = k'^2 + ip \omega_i \eta_a \) and \(C \) and \(D \) are two integration constants. The velocity field and the pressure field in air can then be deduced:

\[
\begin{align*}
v_{ax}(x, z, t) &= (ikC \exp(-kz) + mD \exp(-mz)) e^{i(\omega_i - kx)} \\
v_{az}(x, z, t) &= (kC \exp(-kz) - ikD \exp(-mz)) e^{i(\omega_i - kx)}
\end{align*}
\]

and

\[
\begin{align*}
P_a(x, z, t) &= P_0 - \rho_g (h - z) + ip \omega_i C \exp(-kz) e^{i(\omega_i - kx)}
\end{align*}
\]

4.2 Continuity of the velocity and of the stress at the interface

We now consider the liquid–air interfaces. The continuity of the tangential and normal stresses at the upper interface \(Z_1 = h \) writes:

\[
\begin{align*}
-\eta_a \partial_x v_x - \partial_z v_z + \eta_a \partial_z v_x + \rho_a \partial_z v_z + \varepsilon \partial_z x &= 0 \\
(P - P_0) - \rho_a(\partial_x v_x + \partial_z v_z) + 2 \eta_a(\partial_z v_x + \varepsilon \partial_z x) &= 0
\end{align*}
\]

where \(\xi \) and \(\zeta \) are the displacements respectively along \(x \) and \(z \) of the upper interface \(Z_1 \) (see Fig. 6), and \(\varepsilon = 5d \gamma /\Pi \) is the viscoelastic modulus, \(S \) being the interfacial infinitesimal area. In our case the surface is one dimensional, therefore \(\varepsilon = d \gamma /ds \) is the first equation, the tangential viscous forces in the liquid and in air are balanced by the interfacial viscoelastic stress in the plane of the interface. The second equation balances the pressure jump at the interface with the viscous normal forces in the liquid and in air, and the normal force coming from the interfacial curvature.

In the long wavelength limit, \(\xi \) and \(\zeta \) are given by

\[
\begin{align*}
\partial_x \xi &= v_x(Z_1) = v_x(h) \\
\partial_z \xi &= v_z(Z_1) = v_z(h)
\end{align*}
\]

therefore

\[
\begin{align*}
\xi(x, t) &= \omega^{-1} [kA \sinh(kh) + imB \sinh(mh)] e^{i(\omega_i - kx)} \\
\zeta(x, t) &= \omega^{-1} [ikA \cosh(kh) - kB \cosh(mh)] e^{i(\omega_i - kx)}
\end{align*}
\]

Moreover the continuity of the \(x \) and \(z \) components of the velocities \(\vec{v} \) and \(\vec{v}_a \) at the interface leads to an expression of \(v_{ax}, v_{az} \) and \(P_a \) as a function of the constants \(A \) and \(B \) (instead of \(C \) and \(D \)).

4.3 Dispersion relationship

Eqn (15) couples the velocity fields and the pressure fields in air and in the liquid. Using the expressions (9), (10), (13) and (14) for those fields and the condition of continuity of the velocities
at the interface, eqn (13) results in a system of two equations
with two unknowns, A and B. The determinant has to be equal
to zero. To the first order in kh and mh (long wavelength limit),
this gives the dispersion relationship:

$$\frac{\omega^2}{k^2} \left(\rho h + \frac{\rho_a}{k} m_a - k \right) = \gamma + \frac{\eta \omega}{\eta \omega - i k^2 \hbar} \left[\varepsilon (kh)^2 + E \right]$$

(17)

with

$$E = \gamma \frac{\eta_s}{\eta} (k + m_a) h + \frac{\rho_a \omega^2 h^2}{k (m_a - k)} \left(1 - \frac{\eta_s k^2 + m_a^2}{k^2} \right)$$

$$-i \frac{\eta_s \omega h}{2} \left[-3 + 2 \frac{\eta_s}{\eta} + \frac{m_a}{k} \left(1 - \frac{\gamma \eta_s}{\eta} \right) - \frac{m_a^2}{k^2} (k + m_a) h \right]$$

5 Comparison between theory and experimental results

Under our experimental conditions, eqn (17) can be simplifyed.
It is developed to the first order in k'/k. Furthermore, $\eta_s = 2 \times 10^{-5}$ Pa s is neglected compared to η. We use the values of the physical parameters given in Section 2.1, $\rho_a = 1$ kg.m$^{-3}$ and $e \sim 1$ μm or less. Using the relationship $\eta_s k^2/\rho_a \eta < 1$ and considering the case $|\varepsilon|/h \leq 10^{-7}$ N so that $|\varepsilon k^2 h|/(\eta \omega) < 1$, eqn (17) is simplified to the leading order and divided into a real part and an imaginary part.

5.1 Real part of the dispersion relationship

Taking into account the orders of magnitude corresponding to
our experimental conditions and range of frequencies, the real
part of the dispersion relationship is simplified in two steps.
First we keep the leading order for each physical ingredient, in
particular η_s and ε, and we get the following equation:

$$\frac{\omega^2}{k^2} \left(\rho h + \frac{\rho_a}{k} \right) + \frac{\eta_s}{\rho_a \eta} \sqrt{2 \rho_a \eta} \approx \gamma + \varepsilon (k'h)^2 \varepsilon'$$

(18)

with $\varepsilon (k'h)^2$ a term of the second order in $(k'h)$.

The phase velocity ω/k' is given by the ratio between the
restoring force (terms in the right-hand side of the equation)
and inertia (terms in brackets in the left-hand side). The main
effect of the interfacial viscoelasticity ε is thus a small correction
in the restoring force, whereas the main effect of the viscosity
of air is a slight increase in the inertia.

These two corrections are actually negligible under our
experimental conditions and we get finally the real part of the
simplified dispersion relationship:

$$\frac{\omega^2}{k^2} \left(\rho e + 2 \frac{\rho_a}{k} \right) \approx 2 \gamma$$

(19)

The phase velocity is thus essentially given by the ratio
between the surface tension of the film, which acts as a
restoring force, and the inertia. Air is displaced by a vertical
distance of the order of the wavelength, therefore the inertia of
air cannot be neglected in comparison with the inertia of the
liquid in the film.

Eqn (19) has already been predicted in previous studies.8,11,14
Our calculation shows that this expression is robust even if
parameters such as the interfacial viscoelasticity and viscosities
of the liquid and air are taken into account: they have a negligible
role under our experimental conditions. Note that eqn (19)
is still valid if $|\varepsilon|$ is as large as 1 N m$^{-1}$, since the viscoelastic
term is always multiplied by $(kh)^2$ (see eqn (17)) which is of
order 10^{-6}.

Fig. 5 shows a comparison of eqn (19) with the experimental
measurements of k' versus $f = \omega/(2\pi)$, using e as a fitting
parameter: the agreement is excellent. As highlighted on the
graph, the fit poorly depends on e: under our experimental
conditions, e is smaller than 100 nm and the inertia of air is
actually larger than the inertia of the liquid. Would e vary by
50 percent, the adjustment would still be satisfying, as shown
in Fig. 5.

5.2 Imaginary part

The imaginary part of the dispersion relationship becomes,
when keeping only the leading term describing the effects of
the viscosity η_s and of the interfacial viscoelasticity ε:

$$\frac{\omega^2}{k^2} \left(-\varepsilon (k'h)^2 + \rho e + 3 \frac{\rho_a}{k} \right) = \varepsilon (k'h)^2 \varepsilon''$$

(20)

The contribution of the surface viscoelasticity ε'' to the
attenuation is very small compared to the contribution of the
viscosity of air, and the simplified imaginary part of the
dispersion relationship is finally:

$$-\varepsilon (k'h)^2 = \frac{\eta_s}{\rho_a \eta} \sqrt{\frac{2 \rho_a \eta}{\rho_s \phi_a}}$$

(21)

Eqn (21) predicts that the attenuation of the transverse wave
is mainly determined by the air viscosity. The quantity
$\sqrt{\eta_s/(2\rho_a \phi)} \approx 50 \mu$m appears as the typical distance over which
the dissipation in air takes place. Let us note that the equivalent
distance in the liquid should be $\sqrt{\eta/(2\rho)} \approx 10 \mu$m: the dissipation
in the liquid is thus limited by the film thickness which is
100 times smaller. This is the reason why the dissipation in
the liquid is negligible.

5.3 Measurement of k' and comparison with the theory

The experimental measurement of k' is based on the analysis
of the shape of the resonances presented in Fig. 4: k' corresponds
to the best fit of the experimental data using eqn (5), performed
as follows. The measurements of ϕ_0 and ϕ_a are plotted as
a function of k' using eqn (19) to convert the (angular) frequency
in terms of the real part k' of the wave vector. The amplitude
ϕ_0 is divided by the vibration amplitude of the cell A_{cell}
measured independently at the same frequency. The results are
shown in Fig. 7 around one resonance. $[\phi_0, A_{cell}]'(k')$ and $\phi_a(k')$
are then fitted using the following expressions, extracted from
eqn (5):
The parameters R, $\alpha = \frac{\kappa_0}{\kappa_{\text{cell}}}$ and k'' are three fitting parameters for the amplitude $\kappa_0/\kappa_{\text{cell}}$ around the resonance, which determine respectively the frequency, the amplitude and the width of the resonance peak. R, ϕ_b and k'' are also three fitting parameters for the phase ϕ_b. Let us note that ϕ_b is linked to the continuous drift of ϕ_0 observed in Fig. 4. The results of the fits are reported in Table 1. The fact that $\alpha \neq 1$ and $\phi_b \neq 0$ suggests that the meniscus between the rigid support and the soap film could play a role by attenuating or amplifying the forcing amplitude transmitted from the support to the film, and by introducing a phase difference between the controlled forcing and the border of the film. Moreover the coupling between the response of the meniscus and the response of the soap film could also be responsible for the fact that the position R of the minimum of $|J_0(kR)|$ does not correspond exactly to the radius of the support, equal to 8.1 mm. Thus the parameters R, α and ϕ_b are linked to the boundary conditions, as if an effective forcing of amplitude $\alpha \times \kappa_{\text{cell}}$ and phase ϕ_b would be applied to the soap film at $r = R$. On the other hand the parameter k'' is associated with the intrinsic attenuation of the wave on the soap film.

The measurements of k'' extracted from the fits are plotted in Fig. 8 as a function of frequency of the corresponding mode. The data are compared to the theoretical modeling of $k''(f)$ (obtained by combining eqn (19) and (21)) represented on the same graph without any fitting parameter. The agreement between the theory and the measurements is very good.

6 Discussion and conclusions

We have measured the attenuation of a transverse antisymmetric wave on a thin soap film. Since the attenuation is very small (we find a decay length $1/k'' = 3$ to 14 cm – larger than the radius of the film – depending on the forcing frequency), its determination is based on the analysis of the width of the resonant curves (amplitude and phase in the centre of the film as a function of frequency), which strongly depends on the imaginary part k'' of the wave number. The amplitude and phase of the vibrating film were determined by measuring the deflection of a laser beam reflected by the film, at the forcing frequency.

Using the same approach as in ref. 8–10, we have computed the complex dispersion relationship of the antisymmetric waves in the long wavelength limit. We have obtained analytical expressions for the real part and the imaginary part of the dispersion relationship, simplified to the leading order under our experimental conditions. The real part (variation of the wavelength with the frequency) agrees with our measurements, taking the film thickness e as a fitting parameter like in ref. 11. Considering the imaginary part, the very good agreement between the theory and the measurements evidences that, under our experimental conditions, the dominant source of attenuation of the antisymmetric wave on a soap film is the dissipation by viscous friction in air. This is the main result of this article.
This behavior is very different from the propagation of a transverse wave in a surfactant monolayer at the surface of the liquid solution.\(^8\) In this system, the wave attenuation depends mainly on the rheological properties of the liquid phase and of the liquid–air interface. The measurement of the attenuation of the capillary wave is actually used as a standard technique to determine the surface dilational viscoelastic modulus of the monolayer.\(^8\) Theoretically, the interfacial viscoelasticity acts as a tangential stress which balances, at the interface, the viscous shear stresses in the liquid and in air (see first line of eqn (15)). This 2D viscoelastic stress depends on the local displacement \(\xi\) in the plane of the interface. In a vibrating soap film, because of the liquid incompressibility and of the symmetry of the wave, \(\xi\) is of the order of the perpendicular displacement \(\zeta\) of the interface multiplied by \((k'e)\) (see eqn (16) in the long wavelength limit). Therefore, \(\xi \sim 10^{-3}\zeta\) in a vibrating soap film, whereas \(\xi \sim \zeta\) in the case of a vibrating monolayer: for the same value of the 2D viscoelastic modulus \(e\), the tangential 2D viscoelastic stress at the interface of a soap film is therefore three orders of magnitude smaller than the tangential 2D viscoelastic stress at the surface of a monolayer. As a consequence, the viscoelastic interfacial modulus plays no role in the wave attenuation as long as it is smaller than 1 N m\(^{-1}\). Let us notice that the viscoelastic surface modulus is an increasing function of frequency. It has been measured here at 0.1 Hz, which is very small compared to the typical frequencies applied in the experiments. However, measurements performed at higher frequencies on similar systems\(^9\) show that the viscoelastic surface modulus saturates at high frequency at a value of the order of 100 mN m\(^{-1}\), which is still too small to play a role in the soap film vibration. Besides, we have also shown that the liquid viscosity plays a negligible role in the wave attenuation on a soap film, contrary to what is observed for a monolayer. The reason is that for a soap film the dissipation process in the liquid is limited by the film thickness, which is about 100 times smaller than the typical distance over which the dissipation occurs for a monolayer at the same frequency.

A peculiar behavior of some fitting parameters of the model appears in the analysis of the resonances: first, the distance \(R\) of the effective force from the centre of the film is slightly larger than the radius of the rigid frame supporting the film; second, the effective forcing amplitude given by the fit is smaller or larger (depending on the frequency) than the vibrating amplitude of the support; third, an additional phase shift between the forcing excitation and the response of the film is observed, which depends on the frequency. All those parameters are linked to the boundary conditions of the soap film. They might reveal a complex behavior of the liquid meniscus that separates the soap film from its support: we interpret the discrepancy between the values of the fitted parameters \(R, \phi_b\) and \(\alpha\) and the values of the same parameters imposed by the forcing excitation as an effect of the coupling between the soap film and the meniscus. The relative motion between the film and the meniscus could also be responsible for the large attenuation of the transverse wave at low frequency.\(^9\) Further studies will use this experimental setup to investigate this dynamical coupling between the meniscus and the soap film, which is central to understand the acoustic propagation in liquid foams.\(^6\)

Acknowledgements

The authors thank Valentin Leroy and Benjamin Dollet for fruitful discussion. This work has been supported from the french Agence Nationale de la Recherche (ANR-11-BS09-001).

References