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Abstract – Strongly driven granular media are known to undergo a transition from a gas-like
to a cluster regime when the density of particles is increased. However, the main mechanism
triggering this transition is not fully understood so far. Here, we investigate experimentally this
transition within a 3D cell filled with beads that are driven by two face-to-face vibrating pistons in
low gravity during parabolic flight campaigns. By varying large ranges of parameters, we obtain
the full phase diagram of the dynamical regimes reached by the out-of-equilibrium system: gas,
cluster or bouncing aggregate. The images of the cell recorded by two perpendicular cameras
are processed to obtain the profiles of particle density along the vibration axis of the cell. A
statistical test is then performed on these distributions to determinate which regime is reached by
the system. The experimental results are found in very good agreement with theoretical models
for the gas-cluster transition and for the emergence of the bouncing state. The transition is shown
to occur when the typical propagation time needed to transmit the kinetic energy from one piston
to the other is of the order of the relaxation time due to dissipative collisions.

Copyright c© EPLA, 2018

Introduction. – When submitted to an external en-
ergy input, confined granular matter exhibits different dy-
namics depending on the filling and forcing conditions of
the system [1]. These different dynamical regimes can be
classified into three categories called “solid” [2–4], “liq-
uid” [5] or “gas”, in analogy to the classical counterpart.
This letter is focused on very dilute systems with strong
enough forcing, where particles can move erratically and
have a gas-like behavior. However, such a granular gas dis-
plays properties strikingly different from those of a molec-
ular gas: anomalous scalings of pressure [6] and collision
frequency [7], and non-Gaussian distribution of particle
velocity [8]. These differences are mainly attributed to
the dissipation occurring during inelastic collisions be-
tween particles. Continuous injection of energy is thus
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necessary to sustain a stationary state in this dissipa-
tive out-of-equilibrium system. This is usually performed
experimentally by vibrating a container wall or the whole
container. When the forcing is stopped, numerical sim-
ulations have shown the formation of density gradients
during the cooling (instability of the homogeneous cooling
state) [9] as well as inelastic collapse (particles undergo-
ing an infinite number of collisions in finite time) [10].
The predicted duration of the cooling phase [11] has been
tested experimentally with success [12]. Due to the dissi-
pative character of the collisions, increasing the density
within a driven granular gas, and thus the number of
collisions, will lead to an increase of the energy dissipa-
tion in the system. A cluster formation can then occur
at high enough density despite the continuous energy in-
jection. Such a transition from a gaseous regime to a
cluster of particles when the density increases has been
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established almost 20 years ago [6,13,14]. The parameters
triggering this transition are far from being fully under-
stood even though this observation has been reproduced
numerically [15].

On Earth, experiments are biased by gravity-induced
anisotropy and by the friction forces that act on all the
particles composing the system. Low-gravity environment
is thus needed for granular gases in order to obtain an
experimental situation for which inelastic collisions are
the only interaction mechanism between particles. For
instance, the cluster formation was first observed experi-
mentally on Earth in 3D [6] and 2D [13], and has then been
more clearly demonstrated in low gravity in 3D [14]. More
recently, a Topical Team of the European Space Agency
(ESA) has designed an instrument called VIP-Gran (for
Vibrated Induced Phenomena in Granular matter) [16]. It
aims to study the dynamics and statistical mechanics of
driven granular systems in low-gravity environment from
dilute to dense regimes [17].

In this work, we study experimentally the transition
from a granular gas to a clustered state in low gravity
using the 3D VIP-Gran facility. The full experimental
phase diagram is then obtained for large ranges of ex-
perimental parameters. These results are compared with
numerical and theoretical work predicting the marginal
curve of the phase diagram separating the gas- and liquid-
like regimes [18]. Good agreement is found during this
comparison showing that this transition is governed by
the interplay between inertia (propagation time between
collisions) and inelasticity (relaxation time due to dissi-
pative collisions). This work follows the footsteps of Sack
et al. [19] and Falcon et al. [14] where the authors have ob-
served similar granular states in different geometries and
for different excitations.

Setup. – The setup of the VIP-Gran instrument has
been extensively described in [17]. We only recall here its
main features regarding the experiments discussed in this
work. As sketched in fig. 1, it consists of a cell of dimen-
sion 60× 30× 30 mm where the energy is injected into the
system by two oscillating pistons, separated by an aver-
age distance L. The latter can be tuned to control the
accessible volume of the cell. The two opposite pistons,
moved by linear voice-coil motors, are driven sinusoidally
in phase opposition with the same frequency f and ampli-
tude A. The vibration axis is perpendicular to the moving
walls (see fig. 1). The cell is filled with N bronze beads
of diameter d = 1 mm, either manually or automatically
using a bead-feeding device [17]. Experimental data are
acquired using two high-speed cameras of maximal frame
rates fc = 1000 fps with a resolution of 1024 × 900 pixels.
Visualizations of the cell are obtained in the two directions
perpendicular to the vibration axis (see fig. 1). During one
period of vibration T = 1/f (with a frequency f at most
equal to 20 Hz), the number of recorded images is fcT , that
is 50 images at least. The control parameters are the num-
ber of beads N , the mean distance L between vibrating
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Fig. 1: (Color online) (a) Sketch of the experimental VIP-Gran
cell. The oscillating pistons are colored in light grey. The
recorded images of the cell are numerically divided in slices of
width d along the y-axis (axis of vibration). Front (b), bottom
(c) and side (d) views of the slice are sketched. The front
and bottom views are the two accessible shadow profiles while
the side view is an arbitrary distribution which could have
generated these observations. The link between the measured
shadow and the possible number of particles in the slices is
explained in the main text. (d) Each slice is divided into rows
and columns of dimension d into the x and z directions.

pistons, the amplitude A and frequency f of the forcing.
The distance between the walls oscillates as a consequence
between L − 2A and L + 2A. The packing fraction is then
defined as Φ = NVg/V , where Vg = πd3/6 is the volume
of a single grain, V = l2(L + 2A) the maximum cell vol-
ume, and l = 30 mm. We focus here on dilute regimes with
Φ < 10%. All relevant experimental parameters are listed
in table 1. The filling parameters were chosen according
to numerical simulations predicting the transition from a
gaseous state to a clustered state in the VIP-Gran cell [18].
Moreover, since these simulations do not predict a quali-
tative change with vibration frequency [20], f will not be
varied systematically here. To cover the whole ranges of
experimental parameters, five ESA Parabolic Flight Cam-
paigns (PFCs #63 to 67) were performed on board of a
specially modified Airbus A310 Zero-G aircraft of Noves-
pace through a series of parabolic trajectories which result
in low-gravity periods, each of approximatively 22 s. Low-
gravity environment is about ± 0.05g. Each PFC lasts
3 days with 31 low-gravity parabolae per day. Among
the 465 parabolae performed, 114 were dedicated to the
present study.

Results. – The raw data of the experiments consist
of two sequences of greyscale pictures of the cell, taken
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Table 1: Parameters of each experiment performed during ESA parabolic flight campaigns #63 to 67. Each set of parameters
was precisely chosen in order to reach different regimes of the phase diagram displayed in fig. 3.

PFC #runs L(mm) A(mm) f(Hz) N Symbol

63 25 40.0 [1.0; 1.4; 1.8; 2.0; 2.5] 20 [250; 750; 1250; 1750; 2750] �

64 15 [12.5; 20.0; 27.5] [0.5; 1.0; 1.5; 2.0; 2.5] 20 [1611; 2578; 3545] △

65 15 [30.0; 35.0; 40.0] [2.0; 2.5; 3.0; 3.5; 4.0] 15 [2578; 3008; 3438] �

66 12 40.0 [4.0; 5.0] 15 [2578; 3438; 4297; 5157; 6016; 6875] �

67 30 [20.0; 25.0; 30.0; 35.0; 40.0] 3.0 15 [250; 500; 1000; 1500; 2000; 2500] �

by both high-speed cameras. About 40000 images are
recorded for one single parabola, and of the order of 4.5
millions for all parabolae. As displayed in fig. 2, three
typical dynamical granular regimes are observed in our
experiment depending on the number N of particles in
the cell. A granular gas regime is observed for very di-
lute densities (fig. 2(a)) where particles are homogeneously
distributed within the entire cell. When the density is in-
creased, we observe a cluster of particles almost static in
the middle of the cell, the cluster being surrounded by
lower particle density regions (see fig. 2(b)). In these re-
gions, the particles have fast velocities and transmit the
kinetic energy from the pistons to the cluster where it is
mainly dissipated. The third observed regime consists in
a cluster of all particles that bounces periodically from
one piston to the other one (fig. 2(c)), as previously ob-
served [21]. We called this regime afterwards “bounc-
ing aggregate”. The period of oscillation of the latter is
subharmonics, i.e., twice the piston period. This regime
occurs when the vibration amplitude exceeds a critical
fraction of the cell size (see below). For the correspond-
ing time evolutions, see supplementary slow-down videos
gas.mp4, cluster.mp4 and bouncing.mp4. By using im-
age processing tools, we will now infer from these images
the spatial density profiles for these three regimes.

Image processing. – For each low-gravity phase, we
wait a few seconds (50T ) before recording data, in order
to reach a stationary state within the granular medium.
From there on, data is recorded during 100T (between 5
and 7 s). This corresponds to the middle of the parabola
duration, when the fluctuations of gravity, called g-jitters,
are the weakest. In order to obtain some quantitative
data from the pictures, we performed image analysis us-
ing the open-access software FIJI [22]. First, we applied a
threshold on the pictures, coloring each pixel either black
(corresponding to the shadow coming from the presence
of one or more grains) or white (reporting no particle be-
tween the light and the camera), depending on their grey
level. The second step consists in dividing the constant
free zone of the system into slices along the vibration axis
(y-axis) (see fig. 1). Each slice has a width d, the parti-
cle diameter, and is located at the dimensionless position
y ∈ [(−L/2 + A)/Ld; (L/2 − A)/Ld].

The aim of the image processing described in this sec-
tion is to reconstruct the average 3D density profile of

Fig. 2: (Color online) Right: different dynamical regimes for
different experimental parameters L, N , A, and f : granular gas
(a), cluster (b), and bouncing aggregate (c). The picture come
from the front camera. Left: corresponding average density
profiles ρ(y) of the system obtained from the image processing
(see text). The red (respectively, black) curves are inferred
from images from the bottom (respectively, front) camera. For
the granular gases and the clusters, the average density profiles
are very stable over time. It is not the case for the bouncing
aggregate for which the position of the peak in the average
density profile varies over time.

the system using the 2D pictures. In the following, the
processing will be detailed only for the bottom camera
images, i.e., in the (x, y)-direction. The processing in the
other direction is exactly the same. First, we divided the
considered slice into columns of width d. This implies a
division of the (x, y)-plane in squares of area d2. An exam-
ple of the division of a slice is given in fig. 1. By assuming
a uniform distribution of the grains in the slice, the prob-
ability of the presence of one of those grains in a specific

14003-p3



M. Noirhomme et al.

column is p = d/l. If the slice contains Ny particles, the
probability P (X = n) of finding n grains in the column is
given by the binomial distribution

P (X = n) =

(

Ny

n

)

pn(1 − p)Ny−n, (1)

where X is the random variable representing the number
of grains in a column, and

(

Ny

n

)

= Ny!/[n!(Ny − n)!] the
binomial coefficient. By equaling X = 0 (i.e., by focusing
on the light transmitted through the system), the number
of particles in the slice can be isolated. One obtains

Ny =
ln (1 − sx)

ln (1 − d/l)
, (2)

where sx, the shadow density measured by the bot-
tom camera, is given by the number of black pixels
in the (x, y)-plane divided by the total number of pix-
els in the surface ld. See the supplementary material
Supplementarymaterial.pdf for more details.

Note again that the main hypothesis is that the particles
are uniformly distributed in each slice. This assumption
seems reasonable if there is no external residual acceler-
ation in the system. In addition, note that the number
Ny of particles in a slice is undetermined, from eq. (2), for
sx = 1. This extreme value is mostly unreached, except
for a few pictures given by the bottom camera, for parabo-
lae where the g-jitters were significant. In these cases, the
maximal number of grains in the considered slice was fixed
at 300. This value corresponds to the detection of a single
white pixel in sx. Finally, the normalized distribution of
the number of grains in the slices Ny/N as a function of
y can be found for each image provided by the cameras.
We have averaged the distributions coming from all the
pictures determined by a fixed piston phase in order to
obtain fc/f different distributions.

Statistical analysis. – The average density profiles of
the system are shown in fig. 2, for different parabolae (cor-
responding to different parameters listed in table 1). For
the gaseous state, the distribution is approximatively uni-
form (see fig. 2(a)). By contrast, when a clustered state is
reached, the resulting distribution exhibits systematically
a peak. If the cluster is stabilized in the middle of the
cell, the position of the resulting peak in the distribution
is stable over the time, too (see fig. 2(b)). However, in
the case of the bouncing aggregate, the bulk moves from
one piston to the other one. Consequently, the position
of the resulting measured peak varies over the time (see
fig. 2(c)). Note that we found nearly always differences
between the distributions obtained from the two different
cameras. Actually, the g-jitters tend to gather the grains
close to the bottom of the cell, making the z-distribution
more uniform than the x-distribution over the y-axis. In
the cluster regime, the error bars in the distributions are
also larger for the z-distribution than for the x one, due
to prevailing g-jitters in the z-direction.

In order to extract the state of the system from the aver-
aged distributions coming out of our image processing, we
use the one-sample Kolmogorov-Smirnov (KS) test [15,18].
This KS test consists in comparing the measured cumu-
lated distributions with a theoretical one. In analogy with
classical gases, we assume that a granular gas is charac-
terized by a uniform distribution of the position of the
particles in the cell. In the KS test, the comparison be-
tween two distributions is performed by measuring the
maximal distance separating the measured cumulated dis-
tribution, noted F (y), computed using the corresponding
average density profile ρ(y)/N , and the theoretical cumu-
lated distribution, noted U(y). This distance is defined as

D = sup
|y|≤L/2−A

|F (y) − U(y)|· (3)

Then, we compared D to a given threshold-value Kα cou-
pled to the number of classes characterizing the distribu-
tions, noted k. Following our division of the cell into slices,
this number of classes is simply given by k = L/d. Con-
cerning the threshold Kα, its value depends on the level
of significance of the test, α, which has been fixed at 0.01
in order to follow previous works [15,18]. The KS test of
eq. (2) allows us to consider that the system has reached
a clustered state as soon as the condition D > Kα/

√
k

is fulfilled. On the other hand, as long as the threshold
is not crossed, the grains can be considered as uniformly
distributed in the cell and the system is considered in a
gaseous phase. We applied the KS test on each averaged
distribution F (y) (corresponding to each different piston
phase) obtained from the image processing. We found two
final averaged values of the maximal distances Dx and Dz

for all averaged distributions F (y) coming from each cam-
era. These values Dx and Dz are two statistical character-
izations of the averaged distribution of the position of the
particles along the vibration axis for a given set of param-
eters. For each parabola of each PFC, we calculated Dx

and Dz and compared the obtained values to the related
threshold. The state of the system can be deduced from
Dx and Dz. We detected a gaseous regime (see the red
symbols in the phase diagram of fig. 3) if the conditions
Dx ≤ Kα/

√
k and Dz ≤ Kα/

√
k are fulfilled. Otherwise,

the system is considered as clustered (see the green sym-
bols in fig. 3). We reported these comparisons in the phase
diagram shown in fig. 3.

Phase diagram. – In fig. 3, we plot the typical length
scale of the system δ, normalized by the particle radius, R,
as a function of the packing fraction φ. More precisely, δ is
the mean distance that N particles achieve when they pass
across a constraint free distance (L−2A). This mean value
is numerically calculated and is tabulated as a function of
the chosen experimental parameter set (L and A) [18].
The horizontal axis reports the mean packing fraction of
the system,

Φ = N
4πR3

3(L + 2A)l2
·
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Fig. 3: (Color online) (a) Phase diagram of the dynamical
regimes, observed in the PFC experiments, as a function of the
dimensionless system size, δ/R, and the packing fraction, φ.
The experimental parameters and corresponding symbols are
listed in table 1. Granular gas (red), cluster (green), and
bouncing (blue) regimes are detected with a statistical test (see
text). The theoretical solid line is from eq. (4) with C0 = 1,
R0 = 2, and ǫ = 0.9. The dashed line corresponds to the right-
hand term of eq. (5). Bottom: typical front views of the cell
showing gas (b), cluster (c) and bouncing (d) regimes corre-
sponding to the plain symbols in (a).

The instrument geometry limits the accessible region of
the phase diagram to 30 < δ/R < 90. All experiments
performed during PFCs are represented by symbols which
correspond to sets of parameters listed in table 1. The
solid curve plotted in the phase diagram is the theoretical
frontier separating the gaseous regime from the cluster
one. This marginal curve comes from a theoretical model
comparing the decay time of energy in the system (Haff
time [11]) and the time needed for a particle to cross the
whole cell in response to an energy impulse coming from
the pistons (propagation time), that is [18]

δ

R
=

1

3Φ

ln
[

1 + C0

ε(1+ε)(1−3R0Φ)

]

ln (1/ε)
, (4)

where ε is the restitution coefficient of the particles and
C0 and R0 are two adjustable parameters whose values
have been evaluated with the help of numerical simula-
tions. The theoretical model of eq. (4) is found to be in
good agreement with most experiments (see fig. 3). How-
ever, for Φ < 3% and δ/R � 75, the agreement is not so
good (see top left-hand side in fig. 3). This corresponds
to experiments performed with a large cell in a diluted
regime where the cluster formation is probably induced
by g-jitters. Indeed, as soon as a cluster is formed (e.g.,
by a tiny variation of g), its destruction is very hard to

be done since it is located far from the oscillating pis-
tons. The model which considers a uniform distribution
of the positions of the particles as initial condition is con-
sequently less adapted in this region of the phase diagram
than in others.

The bouncing regime has been only observed for a very
narrow cell (δ/R ∼ 38, or L ∼ 12.5d), and has been previ-
ously reported numerically for the same configuration as
ours [15]. For a configuration where the whole container
is vibrated, the condition to observe a bouncing aggregate
is predicted theoretically to be A > (L− e)/π, e being the
aggregate thickness [19,21,23]. This means that the clus-
ter center of mass follows the container oscillations when
the amplitude of vibration is larger than a fraction of the
free space (L − e) between the cluster and the container
walls. By adapting this model to our configuration (con-
tainer walls vibrated in phase opposition), we find that
the bouncing regime occurs within a bounded region by
the following conditions:

(

π + 2Φ/φRLP

1 − Φ/φRLP
− 2

)

<
L

A
<

(

2π + 2Φ/φRLP

1 − Φ/φRLP
− 2

)

,

(5)
where φRLP = 0.59 is the density of a random loose pack-
ing pile [24]. Only the upper limit of eq. (5) is visible in
fig. 3 (see dashed line separating the cluster region from
the bouncing one). Even though the agreement with the
single experimental point is good, more experiments are
needed to confirm this theory. Finally, note that the anal-
ogous of a triple point (δt/R, Φt) can be defined by the
intercept of the two marginal curves within the phase di-
agram, i.e., by balancing eq. (4) with the right-hand term
in eq. (5).

Conclusion. – We have experimentally investigated
the gas-like to clustering transition in a driven granu-
lar media in 3D low-gravity environment. Experimental
parameters have been exhaustively varied (number of par-
ticles, cell size, and vibrational parameters). We have ob-
served three dynamical regimes: Granular gas, cluster and
bouncing aggregate. These regimes have been character-
ized by means of two perpendicular cameras leading to
the spatial distribution of particles within the cell. We
transformed the shadow density measured on each image
into profiles of particle density along the vibration axis
of the cell. Then, a statistical Kolmogorov-Smirnov test
has been performed to compare these experimental dis-
tributions with uniform ones in order to deduce the state
reached by the system (gas, cluster or bouncing aggre-
gate). The results of these tests were reported in a phase
diagram and confronted with theoretical models for the
gas-cluster transition and the emergence of the bouncing
aggregate. The experimental results are in excellent agree-
ment with the theoretical predictions, except for large
and diluted systems where the g-jitters, as small as they
can be, have probably a non-negligible impact on the fi-
nal state of the system. To reach a high level of low-
gravity conditions (∼10−5g) where g-jitters are negligible,
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the VIP-Gran instrument is currently in development for
the International Space Station. We have thus shown that
the gas to clustering transition occurs when the typical
propagation time between two collisions is of the order
of the relaxation time due to dissipative collisions. This
study could lead to applications for space exploration (e.g.,
handling a granular medium in low gravity by applying vi-
brations) or to a better understanding of the dynamics of
planetary rings in astrophysics.
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