Wave Attractors in stratified & rotating media

Leo Maas

NIOZ
Royal Netherlands Institute for Sea Research

IMAU
Institute for Marine & Atmospheric research
Utrecht University
Summary

• Geo & astrophysical fluids (ocean, atmosphere, planets, stars): external & internal waves
• In confined, *symmetry-breaking* fluid domains, *linear* internal waves are (generally) *multiscale*

wave attractor
Kopecz 2004
Linear waves

\[\omega(k) \]

\[\omega(\kappa) \] discrete

\[\omega(\theta) \] continuous

Geo- & Astrophys. Spatial structure Dispersion Rel. Spectrum

External (surface) elliptic PDE

Internal hyperbolic PDE

Frequency \(\omega \)

Wavenumber vector \(k = \kappa(\cos \theta, \sin \theta) \)
Surface gravity waves

Dispersion relation \(\omega^2 = g\kappa \tanh(\kappa h) \), \(\kappa = |\mathbf{k}| \)

Chaotic wave rays
Helmholtz Eq. – Geom. Optics
Quantum chaos

‘Scarring’
Pointillistic → monolongitudinal
single scale
Internal waves

Fluid stratified in
- density
- angular momentum
- ?

Restoring force
- Gravity (buoyancy)
- Coriolis
- Lorentz

Dispersion Rel.
- \[\omega = \frac{N \cos \theta}{2} \]
- \[\omega_c = \frac{eB}{m} \]

Maximum frequency:

<table>
<thead>
<tr>
<th>Type</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buoyancy</td>
<td>[N = \left(\frac{-g d\rho_0}{\rho_* dz} \right)^{1/2}]</td>
</tr>
<tr>
<td>Inertial (Coriolis)</td>
<td>2(\Omega)</td>
</tr>
<tr>
<td>Electron-cyclotron</td>
<td>[\omega_c = \frac{eB}{m}]</td>
</tr>
</tbody>
</table>
Internal gravity waves

Uniform stratification $N = \text{constant}$

$\frac{1}{2} < \frac{\omega}{N} < 1$

$\frac{\omega}{N} < \frac{1}{2}$

$\omega = \omega(\theta)$

$c_g = \nabla_k \omega \perp c = \frac{\omega}{|k|^2}k$

Sakai, Iizawa, Aramaki 1997
Internal wave spatial structure

Streamfunction Ψ obeys spatial wave equation in stretched coordinates: $$\frac{\partial^2 \Psi}{\partial x^2} - \frac{\partial^2 \Psi}{\partial z^2} = 0$$

Free waves: $\Psi = 0$ at all boundaries \rightarrow simplest nontrivial 2nd order BVP

Forced problems: $\Psi = \Psi(s)$, s: along-boundary coordinate

$\Psi = f(X + Z) - g(X - Z)$

Characteristics $x \pm z = \text{const}$
Arbitrarily shaped domains

Streamfunction $\Psi = f(X+Z) - g(X-Z)$

pressure $p = f(X+Z) + g(X-Z)$

$f^* is invariant of web of connected characteristics. f & g are partial pressures.$

$X+Z = c_1, \quad X - Z = c_2$

$\Psi = 0 \rightarrow g^* = f^*$
Exact geometric solution:

\[\frac{\partial^2 \Psi}{\partial x^2} - \frac{\partial^2 \Psi}{\partial z^2} = 0 \]

Fundamental intervals: give \(\Psi_z \)

Wave attractor

Characteristics: \(x \pm z = \text{const.} \)

\[z = \frac{3}{2} (x - 1) \]

Self-similar but, .. no analytic derivatives

BC: \(\Psi = 0 \)

Specific frequency: \(z = -3/2 \)

\(x = -1 \)

\(x = 0 \)

\(x = 1 \)

John 1941
Maas & Lam 1995
Analytic Fourier collocation

Solve: \[\frac{\partial^2 \Psi}{\partial x^2} - \frac{\partial^2 \Psi}{\partial z^2} = 0 \]

Multiscale free-wave solution \[\Psi = \sum_{n=1}^{\infty} a_n \sin 2n\pi \frac{(x+1)}{3} \sin 2n\pi \frac{z}{3} \]

\[a_{2n+1} = 0 \]

Functional equation
Exact analytic Fourier amplitudes

$$E_m = \langle u^2 + w^2 \rangle = m^2 a_{2m}^2$$

Logarithmic self-similar multiscale spectrum

$$a_{2m} = \frac{2m(-1)^m}{\pi} \sum_{n=0}^{\infty} \sin \left(\frac{m\pi}{2b_n} \right) \left(\frac{1}{m^2 - b_n^2} - \frac{1}{m^2 - b_{n+1}^2} \right) , \quad b_n \equiv \frac{3}{2} \cdot 5^n$$

Related to Weierstrass function

Maas 2009
Generation wave attractor - laboratory observation

Buoyancy: \[b = -\frac{g\rho'}{\rho_*} \]
\[b \propto w = \psi_x \]

Color:

Perturbation vertical buoyancy gradient \[A = b_z / N \]
1 frame/period

oscillation

Hazewinkel et al 2008
Decay phase, 8 frames/period
Spectral development

Observed multiscale Internal Wave field stationary phase

Spectral development
Rotating fluids: Poincaré Eqn.

Henri Poincaré, *Acta Mat.* t.7 (1885)
Sur l’équilibre d’une masse fluide animée d’un mouvement de rotation

Marcel Brillouin, *Annales de l'I.H.P.*, tome 1, 3 (1930)
Quelques propriétés d'une équation aux dérivées partielles hyperbolique
Inertial wave equations

\[\begin{align*}
 u_t - fv &= -p_x \\
 v_t + fu &= -p_y \\
 w_t &= -p_z \\
 u_x + v_y + w_z &= 0
\end{align*} \]

Monochromatic wave: frequency $\omega < f = 2\Omega$

Spatial structure: (hyperbolic) Poincaré Eqn.:

\[p_{xx} + p_{yy} - \left(\frac{f^2}{\omega^2} - 1 \right) p_{zz} = 0 \]

Plane wave dispersion relation:

\[\left(\frac{\omega}{f} \right)^2 = \frac{m^2}{k^2 + l^2 + m^2} = \sin^2 \theta \]

At boundary: $u.n = 0$

oblique-derivative BCs: $a p_\parallel + b p_\perp = 0 \quad \rightarrow \text{multiscale}$

Flat box: vertical dependence separable
Solve generalized eigenvalue problem

Energy (kinetic + potential) of some modes in *flat* rotating cube

No attractors, yet multiscale and degenerate

Rectangular geometrical vs cylindrical rotational symmetries

Maas 2003
Inertial wave experiments

Breaking axial symmetry
Observed harmonic amplitudes

Wave attractors for different ω in 5 m long basin

Manders & Maas 2003
Attractor mixes angular momentum
dye PIV \((u_0, v_0)\)
slope
Topview generates cyclonic mean flow

Maas 2001
Geo & Astrophysical relevance

Wave attractors in homogeneous, rotating spherical shell
Stern 1960, Bretherton 1964, Stewartson 1971
- Earth’ liquid outer core Rieutord et al 2001, Tilgner 1999
- Stellar convective interior Ogilvie & Lin 2004, Ogilvie 2009, Rieutord and Valdettaro 2009

Ogilvie 2009
Harlander & Maas 2007
Nonlinearity?

- Triangle of interaction yields higher harmonics
- Wave breaking and mixing yield mean field effects
- Linear wave’s spatial structure determined by ‘web’ of characteristics

\[(u \cdot \nabla)u = (u \cdot k)u = 0\]
Parabolic channel: $H(x) = \tau(1-x^2)$

Geometry of characteristics

Irrespective of particular x_0, characteristics approach limit cycle: wave attractor

$Z = -\tau$

$t = 0.9$

Bird’s eye view

Surface reflections of attractor for varying ‘depths’ $\tau = \left(\frac{N}{\omega^2} - 1 \right)^{1/2} \frac{D}{L}$

No regular eigenmodes; singularity on wave attractor

Maas & Lam 1995
Chaos?

• No, Lyapunov exponent $\lambda_+ \leq 0$
• Remarkable selfsimilarity

-Dissipative, orientation preserving nonlinear map of circumference onto itself

-Devil’s staircase in rotation number

-Arnol’d tongues

Manders et al 2003
Conclusion

• Linear internal waves in geo & astrophysics are multiscale – related to wave attractors
• Wave attractors: self-similar in physical and parameter space
• Geometric structure of linear wave pattern determined by nonlinear map of circumference onto itself
• Dynamic nonlinearities localized to attractor
• Internal wave attractor: challenge to wave turbulence