Elastocapillary Ridge as a Noninteger Disclination

Robin Masurel,1 Matthieu Roché,1 Laurent Limat,1 Ioan Ionescu,2 and Julien Dervaux1,*

1Laboratoire Matière et Systèmes Complexes, Université Paris Diderot, CNRS UMR 7057, Sorbonne Paris Cité, 10 Rue A. Domon et L. Duquet, F-75013 Paris, France
2Laboratoire des Sciences des Procédés et des Matériaux, Université Paris 13, CNRS UPR 3407, Sorbonne Paris Cité, 99 Avenue J.-B. Clement, F-93430 Villetaneuse, France

(Received 22 January 2019; revised manuscript received 13 May 2019; published 18 June 2019)

Understanding the interfacial properties of solids with their environment is a crucial problem in fundamental science and applications. Elastomers have challenged the scientific community in this respect, and a satisfying description is still missing. Here, we argue that the interfacial properties of elastomers, such as their wettability, can be understood with a nonlinear elastic model with the assumption of a strain-independent surface energy. We show that our model captures accurately available data on elastomer wettability and discuss its implications.

DOI: 10.1103/PhysRevLett.122.248004

In his founding paper on the thermodynamics of interfaces [1], Gibbs defines the surface energy γ of a material as the work required to create a unit area by bringing new molecules in contact with the atmosphere, cutting bulk interatomic bonds, and maintaining a constant intermolecular distance. Also, he highlights the conceptual difference between γ and the surface tension Υ of the interface, defined as the work required to create a unit surface by stretching the material at a constant number of molecules in the interface (see Ref. [2] for a concise summary). The difference stems from the ability of molecules to rearrange under a stretch, e.g., $\gamma = \Upsilon$ in liquids [3,4]. Molecules in an elastic solid cannot move. Stretching a solid alters the intermolecular distance so that $\gamma \neq \Upsilon$, in general. These two quantities are related through the Shuttleworth-Herring equation [4]:

$$\Upsilon(\hat{\lambda}) = \gamma(\hat{\lambda}) + \partial \gamma / \partial \hat{\lambda},$$

where $\hat{\lambda}$ is a two-dimensional stretch tensor in the plane of the interface. Reliable measurements of $\Upsilon(\hat{\lambda})$ and $\gamma(\hat{\lambda})$ exist for various metals [3,5–8].

The surface energy of a material can be adjusted with a chemical treatment, such as monolayer deposition or coating. In this perspective, elastomers, i.e., cross-linked polymer melts, have attracted interest in recent years [9–17]. However, the definition of γ for these amorphous layers poses challenges that have yet to be met. In particular, studies of the dependence of $\gamma(\hat{\lambda})$ in the context of elastomer wetting (or elastowetting) have led to contradictory conclusions [10,14,15,18].

Here, we show that a finite-deformation model of elastomers under the assumption of a strain-independent surface energy provides an excellent description of the wetting and adhesion of elastomers. First, we motivate the need for a nonlinear mechanical model, and we justify the assumption of a strain-independent surface energy. Then, we present our model. A central result of our rationale is that the deformation of the solid below the contact line has the features of a disclination. This result opens the possibility of studying wetting ridges as defects induced by the presence of contact lines. We demonstrate that our model is in very good agreement with available experimental data. Finally, we discuss the validity of other assumptions used in linear models of elastowetting.

Up to now, scientists have modeled wetting and adhesion on elastomers with linear elasticity; i.e., infinitesimal deformations are assumed. This hypothesis holds only in the absence of a prestretch (i.e., the stretch λ defined in Fig. 1 is unity) and $\gamma/2\Upsilon \ll 1$, with γ, the liquid surface tension and Υ, the elastomer surface tension. The latter condition ensures that the slopes of the free surface (and, hence, the strains inside the deformed solid) are small [19].

FIG. 1. Schematic representation of the problem. A flat layer with initial thickness H and infinite lateral dimensions (state B_0) is first biaxially stretched (state B'). A drop is then deposited on this stretched surface and further deforms the elastic layer (state B).
However, experiments never meet these requirements, as $0.5 \lesssim \gamma_e / 2 \gamma_s \lesssim 0.9$ and $1 \lesssim \lambda \lesssim 2$. Besides, cross-linking is not a liquid-solid phase transition, and, thus, elastomers respond like solids at the macroscopic scale but they remain liquid at the microscopic scale [20,21]. Rubber elasticity arises from the entropic cost of stretching polymer chains [22,23], a process that still allows the position of the monomers to fluctuate. As a consequence, monomers in the bulk can move to the surface of the stretched sample: The cost of creating a unit elastomer surface should be strain independent. This view is supported by experiments [15,24] and recent numerical simulations [14].

Following these remarks, we consider a flat incompressible layer, made of a homogeneous isotropic incompressible neo-Hookean material, with initial thickness H and infinite lateral dimensions described in cylindrical coordinates by the region $0 \leq R < \infty$ and $0 \leq Z \leq H$ (Fig. 1) as the reference configuration B_0 of our description. We restrict ourselves to an axisymmetric problem and exclude any dependence of the deformation on the polar angle. This layer is biaxially stretched such that a material point with position $R = (R, Z)$ is mapped to a position $r' = (r', z') = (\lambda R, Z/\lambda^2)$ in configuration B'. The thickness of the prestretched layer is thus $h = H/\lambda^2$. Deformation is locally described by the deformation tensor $F = \partial r'/\partial R$. Finally, a drop deposited at the free surface of the prestretched layer induces an additional deformation, superposed on the previous finite deformation, leading to the formation of an elastocapillary ridge. Thus, another deformation field maps a point with coordinates r' in configuration B' to a position $r = r' + u(r') = [r' + u_r(r', z'), z' + u_z(r', z')]$ in the current configuration B. Note that a deformation from B' to B is expressed in the prestretched coordinates (r', z'). The deformation tensor $F = \partial r'/\partial R$ is a local description of the overall deformation process. The strain energy density of the layer is $W_{\gamma_e} = (\mu/2) (\text{Tr}(F^T F) - 3)$. Following the ideas exposed in the introduction, we assume that the system also has a strain-independent surface energy density $W_{\gamma_s} = \gamma_s$ so that the energetic cost of creating a unit area of the solid layer is constant and independent of the underlying stretch. Furthermore, we account for the incompressibility constraint $\text{det} F = 1$ by introducing a Lagrange multiplier P, interpreted as a pressure, which is here a space-dependent scalar field. The energy functional $\mathcal{E}(r, \rho, P)$ describing the elastic layer then reads

$$\mathcal{E}(r, \rho, P) = \frac{\mu}{2} \int_{B_0} [\text{Tr}(F^T F) - 3] dV + \gamma_s \int_{\partial B} da$$

$$- \int_{B_0} P (\text{det} F - 1) dV - \int_{\partial B} f \cdot u da,$$ (1)

where $\rho = \{\rho, d\}$ is the position of the contact line and dV is an infinitesimal volume in the reference configuration, while da (respectively, da') is an infinitesimal element of area in the current (respectively, prestretched) configuration B (respectively, B'). Vector f describes the force distribution applied at the free surface of the elastic layer by the drop. For a drop forming a spherical cap with radius ρ, surface energy γ_e, and macroscopic (Young-Laplace) contact angle α [shown in Fig. 2(a)], f has two contributions: a localized traction $f^T = \gamma_e (\sin \alpha_e - \cos \alpha_e)$ at the triple line and a distributed compression $f^C = -\gamma_e \sin \alpha/\rho \Pi (\rho - r) \varepsilon_z$ below the drop due to Laplace pressure, with Π the Heaviside function.

We obtain the equilibrium equations describing the system from the principle of stationary potential energy: Energy variations $\delta \mathcal{E}(r, \rho, P)$ due to small variations in the independent fields must be zero. We close the system by providing boundary conditions. Inspired by experimental setups, we assume that the lower surface of the elastic layer is bonded to an infinitely rigid surface, $u_r(r', 0) = u_z(r', 0) = 0$. From Eq. (1), we find the first Piola-Kirchhoff tensor $P = \mu F - \rho F^{-1}$. Recalling that $F = \partial r'/\partial R$, the equilibrium equation can be written as $\text{div} (P F^{-1} \varepsilon) = 0$, where the divergence is evaluated in the prestretched configuration B'. Everywhere at the free boundary $z' = h$ except at the triple line, Nanson’s formula gives $P F \cdot n' = F^C + \gamma_s n \cdot (\nabla n')$, where $n' = (0, 1)$ is the outward unit vector normal to the free surface in B' and n is the outward unit normal vector in B.

From the variation of the energy with respect to ρ, we obtain the force balance at the triple line [25–27]:

$$\gamma_e \cos \alpha = \gamma_s \{\cos \theta^- - \cos \theta^+\} + e_z \cdot f^C \text{ along } e_r,$$ (2)

$$\gamma_e \sin \alpha = \gamma_s \{\sin \theta^- + \sin \theta^+\} + e_z \cdot f^C \text{ along } e_z,$$ (3)

where $\theta^- = [\partial u_z/\partial r(\rho^-, 0)]$ and $\theta^+ = [\partial u_z/\partial r(\rho^+, 0)]$ are the (positive) angles of the solid surface on each side of the triple line. The jump in the first derivative of the displacement field $[\partial u_z/\partial r(\rho^-, 0) \neq \partial u_z/\partial r(\rho^+, 0)]$ induces a logarithmic divergence of the stress. Thus, the contact line is a singular structure known as a disclination [28] in Eshelbyian mechanics whose strength, given by $1/2 - \theta / 2\pi$, can take any value between $-1/2$ and $1/2$, as there is no underlying lattice structure, in contrast with disclinations in crystals. The last terms in Eqs. (2) and (3) involve the Eshelby force f^E acting on an elastic singularity [29,30]:

$$f^E = \lim_{\epsilon \to 0} \int_{\Gamma_{\epsilon}^r} (W_{\gamma_s} I - F^T F) \nu' d\epsilon',$$ (4)

where Γ_{ϵ}^r is a contour of radius ϵ enclosing the defect in B' and ν' is the outward unit normal vector to the contour; f^E has the dimensions of a force per unit length, and it is the J integral in fracture mechanics [31]. Equations (2) and (3) are new generalized laws for contact angles of liquid drops on soft materials.

Equations (2) and (3) present interesting limiting cases. Fluids are described using the current (deformed) configuration as a reference, in which case $F = I$. The first
Piola-Kirchoff stress tensor then reduces to the Cauchy stress tensor which, at rest, is just a pressure:
$$
P = -p I.$$ The contour integral (4) vanishes [32], leading to the Neumann construction that rules the force balance at a triple line between fluids. In contrast, shear stresses between fluids in relative motion induce configurational forces at the triple line [32]. On a soft substrate without hysteresis, $$f_E$$ vanishes in the framework of linear elasticity, i.e., when $$\gamma_l = 2\gamma_s \to 0$$, and the liquid surface tension is balanced by the surface energy of the solid. When the substrate is infinitely rigid, $$\theta^-$$ and $$\theta^+$$ vanish, and Eq. (2) reduces to a generalized Young equation with line tension [33]. Equation (3) indicates that the vertical surface traction is balanced by elasticity for hard materials [19].

We solve Eqs. (1)–(4) using a numerical method that we developed earlier [34], under the constraint of a constant drop volume. For all simulations, $$H = 80 \mu m$$, similar to typical values encountered in experiments, and $$\alpha = \pi / 2$$. The volume of the droplet is $$5 \mu L$$, and its radius $$\rho \sim 1.33 \ mm$$, to minimize the influence of the finite size of the drop. In Supplemental Material [35] (which includes Refs. [36–38]), we derive an analytical solution to the elastowetting problem in the framework of incremental elasticity [37], where a displacement field $$u$$ with a small amplitude $$\epsilon$$ is superimposed on top of the nonlinear axisymmetric prestretched solution. The equilibrium and constraint equations, as well as the boundary conditions, are then linearized with respect to $$\epsilon$$ and naturally couple the perturbation with the prestretch. Figure 2(b) shows that the incremental theory provides an excellent approximation to the numerical simulations of the nonlinear problem for the shape of the ridge for $$\lambda = 1$$, at both large ($$r \gtrsim \ell_s = \gamma_s / (2\mu)$$) and small ($$r \lesssim \ell_s$$) scales. When $$\lambda = 1.5$$, we observe poor agreement between the incremental theory and the numerical simulations [Fig. 2(c)]. The latter predicts a ridge height smaller than expected from the incremental theory, and the opening angle $$\theta$$ of the ridge is larger. Figure 2(d) indicates that, in the presence of a prestretch, numerical simulations coincide with the incremental solution only at small values of the ratio $$\gamma_c / 2\gamma_s$$, for $$\gamma_s = 30 \ mN \ m^{-1}$$. The agreement between the two models is very good for $$\lambda = 1$$.

A focus on the dependence of $$\theta$$ on control parameters ($$\lambda$$, $$\gamma_c / \gamma_s$$) allows us to discuss the nature of the force...
balance at the contact line. We compare the results of our simulations to the Neumann construction, \(\theta = \pi - 2 \arcsin(\gamma_f/2\gamma_s) \), and its linearized version for small slopes (i.e., \(\gamma_f/\gamma_s \ll 1 \)): \(\theta = \pi - \gamma_f/\gamma_s \). The opening angle \(\theta \) decreases with an increasing value of the ratio \(\gamma_f/2\gamma_s \) for all models [Fig. 2(e)]. For \(\lambda = 1 \) and for values of \(\gamma_f/2\gamma_s \) up to \(\sim 0.9 \), the linearized Neumann construction approximates the nonlinear elastowetting problem well, with an error smaller than 5\%. For \(\gamma_f/2\gamma_s \gtrsim 0.9 \), \(\theta \) is larger than predicted by the linear theory, with the difference increasing with \(\gamma_f/2\gamma_s \). At the same time, the full Neumann construction fails at following the nonlinear prediction. For \(\gamma_f/2\gamma_s \sim 0.9 \), typical of silicone and water experiments, the nonlinear prediction of \(\theta \) is 30\% larger than the prediction based on the Neumann construction. This difference is much larger than the precision of typical experimental measurements. The nonlinear model indicates that \(\theta \) increases monotonically with \(\lambda \) [Figs. 2(e) and 2(f)]. This result contradicts the predictions of linear theories, in which \(\theta \) is independent of \(\lambda \). Thus, this dependence is a pure nonlinear effect.

Analytical considerations can help clarify the mechanics behind the dependence of the opening angle \(\theta \) on deformation \(\lambda \) [Fig. 2(f)]. The stress field around the elastocapillary ridge is equivalent to that around a wedge disclination. In linear elasticity [39–41], the Eshelby force (4) for a disclination line in an external stress field is \(f^E \equiv -2\rho \times (2\pi \mathbf{S} \cdot \mathbf{e}_0) \). Here, \(M_{im} = T_{ji} \epsilon_{iama} u_m(R) \) is the torque on the defect, \(T_{ji} \) is the Cauchy stress, and \(\epsilon_{iama} \) is the Levi-Civita tensor. The Einstein summation convention applies. The factor of 2 results from the presence of the free surface that acts as a mirror disclination of opposite strength \(-S\). At leading order, the vertical component of the Eshelby force acting on the ridge is

\[
f^E \approx 4\pi ST_{rr}^{(0)} \zeta(R) = 2\mu(\pi - \theta) \left(\lambda^2 - \frac{1}{\lambda^2} \right) \zeta(R).
\]

Equation (5) is equivalent to the Peach-Koehler force acting on a dislocation [42]. Indeed, the vertical component of the Peach-Koehler force on a surface dislocation reads \(-2|T_{rr} u_z|\), where the bracket operator \([f]\) denotes the jump of \(f \) across the defect. For a dislocation, the stress field is continuous, while the jump of the displacement \(u_z \) is nonzero (and defined as the Burger vector). In our case, the boundary condition at the free surface imposes that \(T_{rr} = T_{rr}^{(0)} \zeta \partial \theta' \). Displacement \(u_z \) is thus continuous, while the shear stress is discontinuous [Fig. 3(a)]. This discontinuity, which naturally appears in the theory of incremental elasticity as well as in the nonlinear numerical simulations, is a central feature of our nonlinear analysis that is not captured by simple linear elastic models without a prestretch [17]. We recover Eq. (5) if we inject \(T_{rr} \) in the Peach-Koehler expression or by the direct integration of (4) (see Supplemental Material [35]). The force \(f^E \) is independent of the elastic modulus, because the height of the ridge is inversely proportional to the substrate shear modulus: \(\zeta(\rho) = \beta(\rho, H) \gamma_s \sin \alpha/\mu g_\infty(\lambda) \) (see Supplemental Material [35] for a definition of \(g_\infty \)). Here, \(\beta(\rho, H) \) is a geometric parameter that is weakly dependent on the thickness \(H \) and the droplet size \(\rho \), provided that both are larger than the elastocapillary length \(\ell_s \), and whose value is \(\beta(\rho, H) \sim \zeta. \) Thus, we have the approximation \(f^E \approx \gamma_f/2\gamma_s |\beta(\rho, H)(\lambda^2 - 1/\lambda^4)| (\pi - \theta). \) The Eshelby force \(f^E \) is equivalent to an effective surface energy of magnitude \(\gamma_f \sin \alpha/|2\gamma_\infty(\lambda)| (\lambda^2 - 1/\lambda^4) \) whose origin is purely topological. As a consequence, we define an “apparent surface tension” \(\Upsilon \) at the ridge tip:

\[
\Upsilon \approx \gamma_s \left(1 + \gamma_f \sin \alpha \frac{\lambda^2 + \lambda^6 - \lambda^3 - 1}{\gamma_s} \right),
\]

which reduces to \(\Upsilon \approx \gamma_s \left(1 + 3\gamma_f/\gamma_s^{-1} \sin \alpha(\lambda - 1) \right) \) at small \(\lambda \). Equation (6) leads to the following approximation for the opening angle:

\[
\theta \approx \pi - \frac{\gamma_f}{\Upsilon}.
\]

Equations (6) and (7) result from a crude approximation of the Eshelby force, as we have neglected the force of the disclination on itself as well as the force induced by Laplace pressure on the defect. These contributions of higher order than the leading term [Eq. (5)] can become significant when \(\gamma_f/2\gamma_s = O(1) \), even in the case \(\lambda = 1 \) [Fig. 2(e)]. Nonetheless, Eq. (7) provides a reasonable approximation for \(\theta \) [Fig. 2(f)]. The existence of an elastic restoring force proportional to \(\zeta \) and \(\mu \) was reported in recent molecular dynamics simulations [13].

Now we compare our theoretical predictions to available experimental data. Xu et al. measure an opening angle \(\theta \sim 91.2^\circ \) in their glycerol-silicone system, with \(\gamma_{GLYS} \approx 41 \pm 1 \) mN m\(^{-1} \) [10]. The surface energy of polydimethylsiloxane (PDMS) deduced from the Neumann construction is \(\gamma_s = 29 \) mN m\(^{-1} \). Our nonlinear model yields \(\gamma_s = 24 \) mN m\(^{-1} \), in better agreement with the surface energy of liquid PDMS, \(\gamma_{PDMS} = 21 \pm 1 \) mN m\(^{-1} \). Figure 3(b) shows that our numerical simulations capture well Xu et al.’s data for \(\theta(\lambda) \). In addition, we obtain excellent agreement between experiments and Eq. (7) [Fig. 3(b)].

Within the experimental error bars, we conclude that Xu et al.’s observations result from the nonlinear elastic force \(f^E \) acting on the elastocapillary ridge. From the assumptions of our model based on mechanical and molecular considerations and the good agreement between experiments and the theory, we conclude that soft elastomers have a strain-independent surface energy; i.e., the Shuttleworth effect does not exist for elastomers in this range of deformations, in agreement with recent experimental and numerical results [14,15]. Moreover, results in
Commisariat à l’Investissement d’Avenir are gratefully acknowledged for their financial support through the GELWET project (ANR-17-CE30-0016), the Labex Science and Engineering for Advanced Materials and devices (ANR 11 LABX 086 and ANR 11 IDEX 05 02), and the funding of the POLYWET and Modélisation Multi-Echelle de Matériaux et d’Interfaces (MMEI) projects.

We thank Cyprien Gay and Suzie Protière for discussions. Agence Nationale de la Recherche (ANR) and

Fig. 2 indicate that the Neumann construction does not hold for values of γ_f/γ_s typical of experiments, whatever the deformation of the substrate. We note that the apparent surface tension defined in Eq. (6) appears in the force balance at the tip of the ridge as a consequence of the corner singularity; Υ cannot be used as a pseudo-Shuttleworth effect that would apply everywhere at the surface of the elastomer. Finally, remarkable predictions arise from the Biot instability\[43\]. In this range of λ, Υ is negative. In this configuration, the nonlinear force due to the slope jump pulls on the free surface of the elastic layer along with the surface tension of the liquid. Although such an effect remains to be seen, it could lead to fracture, phase separation if free chains are present in the elastomer, formation of an inverted cusp, or changes in the drop morphology. Current experimental work in our group investigates this region of the parameter space.

In conclusion, we have unraveled a general balance of forces [Eqs. 2] and 3] at contact lines on soft materials based on nonlinear elasticity under the assumption of a strain-independent surface energy. We predict quantitatively the strain dependence of the angle at the apex of the elastocapillary ridge below a three-phase contact line that we show to result from mechanical nonlinearities. We bring evidence of the invalidity of the Neumann construction in elastocapillarity. A key result is that the ridge is equivalent to a noninteger disclination. We expect our work to have implications in the control of droplet interactions on soft surfaces and the study of elastowetting dynamics \[11,12,44\], as the disclination force is an additional dissipation source. Finally, our theoretical framework should help understand the formation of elastic singularities such as cusps in the Biot instability \[45–48\].

We thank Cyprien Gay and Suzie Protière for discussions. Agence Nationale de la Recherche (ANR) and

- juliendervaux@univ-paris-diderot.fr