Vincent Fleury, Ameya Vaishnavi Murukutla, Nicolas R. Chevalier, Benjamin Galloi, Marina Capellazzi-Resta, Pierre Picquet and Alexis Peaucelle Physics of amniote formation Août (2016).

On peut retrouver les films à l'adresse GALERIE D'EMBRYONS

Plus précisément : Video 1 de l'article

Video 2 de l'article

Video 3 de l'article

Video 4 de l'article

Video 5 de l'article

Video 6 de l'article

Video 7 de l'article

Video 8 de l'article

Video 9 de l'article

Video 10 de l'article

Video 11 de l'article

Video 12 de l'article

Video 13 de l'article

Video 14 de l'article

Video 15 de l'article

Video 16 de l'article

Video 17 de l'article

Video 18 de l'article

Video 19 de l'article

Video 20 de l'article

Video 21 de l'article

Video 22 de l'article

Video 23 de l'article

Video 24 de l'article

Video 25 de l'article

Video 26 de l'article

Video 27 de l'article

Video 28 de l'article

Video 29 de l'article

Vincent Fleury, Nicolas Chevalier, Fabien Furfaro and Jean-Loup Duband Buckling along boundaries of elastic contrast as a mechanism for early vertebrate morphogenesis. février (2015).

Vincent Fleury, Can Physics Help to Explain Embryonic Development. september (2013).

Vincent Fleury, Peut-on mieux comprendre le développement des embryons grâce à la physique? septembre (2013).

Vincent Fleury, Development,Triploblastism, Physics of Wetting and the Cambrian Explosion. august (2013).

Link to the movies of this article

Vincent Fleury, Biofluidics of animal morphogenesis: does evolution follow stream lines?

Vincent Fleury, Clarifying tetrapod embryogenesis by a dorso-ventral analysis of the tissue flows during early stages of chicken development. April (2012).

Link to the movies of this article

Olena P. Boryskina, Alia Al-Kilani and Vincent Fleury, Body plan of tetrapods, is it patterned by a hyperbolic tissue flow? November (2011).

Feature Article

Paru le 11 Août 2011, EPJAP

Olena P. Boryskina, Alia Al-Kilani and Vincent Fleury, Limb positioning and shear flows in tetrapods, Eu. Phys. J. App. Phys. 55 (2) (2011).


There is increasing evidence that animal morphogenesis consists of a large scale tissue flow, which defines the gross characteristics of the animal body at a very early developmental stage. We have studied the vertebrate embryo cell trajectories between a moment when it is flat and formless, to a moment when the body plan is recognizable (chicken embryo days 2-3 of development). We find that a large vortex flow patterns the vertebrate bauplan, and especially the limb territories, both hindlimbs and forelimbs. In vivo velocity measurements show that the vortices are dragged by a localized shear oriented along the median axis. A simple hydrodynamic model accounts for the lenticular shape of the limb plates. On the hindlimb plate, the flow propagates in the form of a solid-body vortex on the limb plate, dragged by a Poiseuille flow along the backbone. In vivo tonometry measurement shows that there exist stress gradients in the embryonic tissue, and that the flow pattern is congruent with the direction of decrease of stress magnitude.

On peut retrouver les films à l'adresse GALERIE D'EMBRYONS

Plus précisément : Movie 1 de l'article

Plus précisément : Movie 2 de l'article

Plus précisément : Movie 3 de l'article

Plus précisément : Movie 4 de l'article

Plus précisément : Movie 5 de l'article

Plus précisément : Movie 6 de l'article

Paru Juillet 2011

Vincent Fleury, A change in boundary conditions induces a discontinuity of tissue flow in chicken embryos and the formation of the cephalic fold, Eu. Phys. J. E 34 (7) (2011).


The morphogenesis of vertebrate body parts remains an open question. It is not clear whether the existence of different structures, such as a head, can be addressed by fundamental laws of tissue movement and deformation, or whether they are only a sequence of stop-and-go genetic instructions. I have filmed by time-lapse microscopy the formation of the presumptive head territory in chicken embryos. I show that the early lateral evagination of the eye cups and of the mesencephalic plate is a consequence of a sudden change in boundary conditions of the initial cell flow occuring in these embryos. Due to tissue flow, and collision of the two halves of the embryo, the tissue sheet movement is first dipolar, and next quadrupolar. In vivo air puff tonometry reveals a simple visco-elastic behaviour of the living material. The jump from a dipolar to a quadrupolar flow changes the topology of the early morphogenetic field which is observed towards a complex vortex winding with a trail (the eye cups and brain folds). The hydrodynamical model accounts for the discontinuity of the vector field at the moment of collision of the left and right halves of the embryo, at a quantitative level. This suggests a possible mechanism for the morphogenesis of the head of amniotes, as compared to cephalochordates and anamniotes.

On peut retrouver les films à l'adresse GALERIE D'EMBRYONS

Plus précisément: Movie of the article


Vincent Fleury, Olena P. Boryskina and Alia Al-Kilani, Hyperbolic symmetry breaking and its role in establishment of the body plan of vertebrates, C. R. Acad. Sci. Séries Biologies, 334 (7), 505 (2011).


This note presents experimental evidence that a hyperbolic tissue flow plays an important role in the establishment of the organization plan of vertebrates. We have followed the development of chicken embryos from the gastrula stage up to the moment when the body plan is recognizable. We have found that establishment of this plan occurs in the presence of a uniform tissue flow which at all stages presents a hyperbolic pattern. The flow is bi-directional in the Antero-Posterior direction, with a fixed point (stagnation point of the flow) which is a point of zero speed in all directions, in the reference frame of the egg. This stagnation point of the flow is located at the level of the presumptive yolk stalk of the chicken (analogous to the mammal navel). On either sides (Left and Right) of the body, the flow is also bi-directional. The Antero-Posterior bi-directionality and the Left-Right bi-directionality result in splitting of the embryo into four domains with vortex-like flow, with partial mirror symmetry between the Left/Right halves and Top/Bottom ones. The center of symmetry is the stagnation point. The broken symmetry of the flow is up-scaled in the adult animal. Areas with straightforward tissue movement are the ones where axial structures develop. The lateral domains with vortex-like flow co-localize with the future limb plates.

The supplementary movies of this article can be found at


Specifically : Movie 1 de l'article

Specifically : Movie 2 de l'article

Specifically : Movie 3 de l'article

Specifically : Movie 4 de l'article

Specifically : Movie 5 de l'article

Specifically : Movie 6 de l'article

Specifically : Movie 7 de l'article

Specifically : Movie 8 de l'article

Specifically : Movie 9 de l'article

Specifically : Movie 10 de l'article


Vincent Fleury, Dynamic topology of cephalochordate to amniote morphological transition : a self-organized system of Russian dolls, C. R. Acad. Sci. 334 (2), 91 (2011).

Cette note présente une explication mécaniste de la transition de morphologie entre les céphalochordés et les amniotes. En étudiant en détail les mouvements morphogénétiques ayant lieu au cours de premiers jours de développement d’un amniote typique (le poulet), on constate que la formation du dos, de la tête et du cœur, puis du sac amniotique, obéissent à une logique physique, liée au sens dans lequel avance l’écoulement des tissus, en formant une succession de plis perpendiculaires au sens de l’écoulement. Les premiers plis créés par cet écoulement forment la région dorsale de l’embryon, et correspondent à un embryon sans tête. Les seconds plis sont ventraux et créent le cœur et la tête. Le troisième pli est dorsal et façonne en se contractant le sac amniotique (chorion). Les différences entre les plans d'organisation des chordés résulteraient en partie, des avancées relatives cumulées vers l'avant, ou vers l'arrière, de ces écoulements tissulaires. L’ensemble du phénomène aboutit à un emboîtement auto-organisé analogue à une succession de poupées russes : le cœur dans l’embryon, et l’embryon dans le sac amniotique formant trois « poupées » emboitées. Il existe également une symétrie miroir entre la partie antérieure et la partie postérieure, en sorte que les plis se forment aux deux extrémités, ce qui explique naturellement l’existence d’animaux ayant un cœur caudal.

Les films relatifs à cet article sont accessibles sur la page GALERIE D'EMBRYONS

Plus précisément : Movie 1 de l'article

Plus précisément : Movie 2 de l'article

Plus précisément : Movie 3 de l'article


Vincent Fleury, Alia Al-Kilani, Olena P. Boryskina, Annemiek JM Cornelissen, Thi-Hanh Nguyen, Mathieu Unbekandt, Loïc Leroy, Georges Baffet, Ferdinand Le Noble, Olivier Sire, Elodie Lahaye, Introducing the scanning air puff tonometer for biological studies, Phys. Rev. E., 81, 021920 (2010).


Vincent Fleury Clarifying tetrapod embryogenesis, a physicist's point of view, Eur. Phys. J. App. Phys. 45, 30101,(2009).

A chapter of the book "Origin(s) of Design in Nature", Cellular Origin, Life in Extreme Habitats and Astrobiology, Series N°23,

Edited by Liz Swan, Richard Gordon and Joseph Seckbach; Springer Verlag, 2012.

Link to the publisher's page,

Ce texte contient une analyse de la formation des yeux, du coeur EXTRAIT :

La citation de la page : "If you can talk brilliantly about a problem, it can create the consoling illusion that it has been mastered.” ", Stanley Kubrik.